Temperature and pressure dependency of the burning velocity in laminar premixed methanol and polyoxymethylene dimethyl ether (OME1, OME2, and OME3) flames
Chris Fritsche, Krishna Prasad Shrestha, Sven Eckart, Fabian Mauß, Hartmut Krause
First published: April 2021
Abstract
This work reports the laminar burning velocities (LBV) for the liquid fuels methanol, and polyoxymethylene dimethyl ethers (OMEn, n = 1-3) in mixtures with air utilizing the heat flux burner and constant volume chamber at temperature 393 to 443 K, pressure 1 to 10 bar, and equivalence ratio 0.6 to 1.9. Laminar burning velocities for OME2 and OME3 higher than 1 bar are reported for the first time. A detailed chemical kinetic model for OME2 and OME3 was developed based on our previous work utilizing experimental data from this work. Overall, model predictions are in good agreement with the experimental data. It is previously shown that with increases in unburned gas temperature laminar burning velocity increases and shows a linear trend with respect to temperature. Further, laminar burning velocity decreases with an increase of initial pressure. The dependence of burning velocity is not linear for all the fuels investigated. For comparable temperature and pressure conditions, it was found that with an additional CH2O group the laminar burning velocities increase marginally and there is no shift of maximum laminar burning velocity with respect to equivalence ratio.