Methane flames with a substitution of 50 to 100 percent hydrogen: Experimental and numerical investigation of the temperature and pressure dependence of the laminar burning …
Chris Fritsche, Sven Eckart, Krishna Prasad Shrestha, Fabian Mauß, Hartmut Krause
First published: April 2021
Abstract
This work reports the laminar burning velocities for CH4/H2 blends in mixtures with air utilizing the constant volume chamber at temperatures from 300 to 423 K, pressures from 2 to 10 bar and equivalence ratios from 0.7 to 2.4. A detailed chemical kinetic model based on our previous work is used to reproduce the experimental data. The chemical kinetic model can reproduce the experimental data better at lean conditions compared to rich conditions. It is observed that with an increase in H2 fraction in fuel blend, laminar burning velocities increase. Model reveals that with increasing H2 fraction in the fuel blend, formation of key radicals H, OH and O are promoted leading to higher laminar burning velocities. The most sensitive reactions are O2+H=OH+O, CO+OH=CO2+H, CH4+H=CH3+H2 and CH4+OH=CH3+H2O. It is found that as initial mixture temperature increases, the laminar burning velocity increases and shows a linear trend whereas this trend is reversed as the initial pressure increases.