Real-time emission prediction with detailed chemistry under transient conditions for hardware-in-the-loop simulations

Mario Picerno, Sung-Yong Lee, Michal Pasternak, Reddy Siddareddy, Tim Franken, Fabian Mauss, Jakob Andert

First published: December 2021

Abstract

The increasing requirements to further reduce pollutant emissions, particularly with regard to the upcoming Euro 7 (EU7) legislation, cause further technical and economic challenges for the development of internal combustion engines. All the emission reduction technologies lead to an increasing complexity not only of the hardware, but also of the control functions to be deployed in engine control units (ECUs). Virtualization has become a necessity in the development process in order to be able to handle the increasing complexity. The virtual development and calibration of ECUs using hardware-in-the-loop (HiL) systems with accurate engine models is an effective method to achieve cost and quality targets. In particular, the selection of the best-practice engine model to fulfil accuracy and time targets is essential to success. In this context, this paper presents a physically- and chemically-based stochastic reactor model (SRM) with tabulated chemistry for the prediction of engine raw emissions for real-time (RT) applications. First, an efficient approach for a time-optimal parametrization of the models in steady-state conditions is developed. The co-simulation of both engine model domains is then established via a functional mock-up interface (FMI) and deployed to a simulation platform. Finally, the proposed RT platform demonstrates its prediction and extrapolation capabilities in transient driving scenarios. A comparative evaluation with engine test dynamometer and vehicle measurement data from worldwide harmonized light vehicles test cycle (WLTC) and real driving emissions (RDE) tests depicts the accuracy of the platform in terms of fuel consumption (within 4% deviation in the WLTC cycle) as well as NOx and soot emissions (both within 20%).

Read more

Privacy Policy & Cookie Settings 

We use cookies to provide you with the best possible content and functionality on our website. We also use cookies for analysis purposes. 

Go to the Privacy Policy and Cookie Settings. 

Agree with allOnly allow necessary cookies

Privacy policy & Cookie settings 

Please note that technically necessary cookies must be set in order to maintain the functionality of our website, as described in our privacy policy. We only use cookies for analysis purposes with your consent. Further details, in particular regarding the storage period and recipients, can be found in our privacy policy. You can adjust your selection in the cookie settings. 

PHP Sitzung
Das Cookie PHPSESSID ist für PHP-Anwendungen. Das Cookie wird verwendet um die eindeutige Session-ID eines Benutzers zu speichern und zu identifizieren um die Benutzersitzung auf der Website zu verwalten. Das Cookie ist ein Session-Cookie und wird gelöscht, wenn alle Browser-Fenster geschlossen werden.
Google Maps
Google Maps ist ein Karten-Dienst des Unternehmens Google LLC, mit dessen Hilfe auf unserer Seite Orte auf Karten dargestellt werden können.
YouTube
YouTube ist ein Videoportal des Unternehmens Google LLC, bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. YouTube wird benutzt um Videos innerhalb der Seite abspielen zu können.
Vimeo
Vimeo ist ein Videoportal des Unternehmens Vimeo, Inc., bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. Vimeo wird benutzt um Videos innerhalb der Seite abspielen zu können.
Google Analytics
Google Analytics installiert die Cookie´s _ga und _gid. Diese Cookies werden verwendet um Besucher-, Sitzungs- und Kampagnendaten zu berechnen und die Nutzung der Website für einen Analysebericht zu erfassen. Die Cookies speichern diese Informationen anonym und weisen eine zufällig generierte Nummer Besuchern zu um sie eindeutig zu identifizieren.
Matomo
Matomo ist eine Open-Source-Webanwendung zur Analyse des Nutzerverhaltens beim Aufruf der Website.