Modeling of reactivity controlled compression ignition combustion using a stochastic reactor model coupled with detailed chemistry

Tim Franken, Andrea Matrisciano, Rafael Sari, Alvaro Fogue Robles, Javier Monsalve-Serrano, Dario Lopez Pintor, Michal Pasternak, Antonio Garcia, Fabian Mauss

First published: 5 September 2021

Abstract

Advanced combustion concepts such as reactivity controlled compression ignition (RCCI) have been proven to be capable of fundamentally improve the conventional Diesel combustion by mitigating or avoiding the soot-NOx trade-off, while delivering comparable or better thermal efficiency. To further facilitate the development of the RCCI technology, a robust and possibly computationally efficient simulation framework is needed. While many successful studies have been published using 3D-CFD coupled with detailed combustion chemistry solvers, the maturity level of the 0D/1D based software solution offerings is relatively limited. The close interaction between physical and chemical processes challenges the development of predictive numerical tools, particularly when spatial information is not available. The present work discusses a novel stochastic reactor model (SRM) based modeling framework capable of predicting the combustion process and the emission formation in a heavy-duty engine running under RCCI combustion mode. The combination of physical turbulence models, detailed emission formation sub-models and state-of-the-art chemical kinetic mechanisms enables the model to be computationally inexpensive compared to the 3D-CFD approaches. A chemical kinetic mechanism composed of 248 species and 1428 reactions was used to describe the oxidation of gasoline and diesel using a primary reference fuel (PRF) mixture and n-heptane, respectively. The model is compared to operating conditions from a single-cylinder research engine featuring different loads, speeds, EGR and gasoline fuel fractions. The model was found to be capable of reproducing the combustion phasing as well as the emission trends measured on the test bench, at some extent. The proposed modeling approach represents a promising basis towards establishing a comprehensive modeling framework capable of simulating transient operation as well as fuel property sweeps with acceptable accuracy.

Read more

Privacy Policy & Cookie Settings 

We use cookies to provide you with the best possible content and functionality on our website. We also use cookies for analysis purposes. 

Go to the Privacy Policy and Cookie Settings. 

Agree with allOnly allow necessary cookies

Privacy policy & Cookie settings 

Please note that technically necessary cookies must be set in order to maintain the functionality of our website, as described in our privacy policy. We only use cookies for analysis purposes with your consent. Further details, in particular regarding the storage period and recipients, can be found in our privacy policy. You can adjust your selection in the cookie settings. 

PHP Sitzung
Das Cookie PHPSESSID ist für PHP-Anwendungen. Das Cookie wird verwendet um die eindeutige Session-ID eines Benutzers zu speichern und zu identifizieren um die Benutzersitzung auf der Website zu verwalten. Das Cookie ist ein Session-Cookie und wird gelöscht, wenn alle Browser-Fenster geschlossen werden.
Google Maps
Google Maps ist ein Karten-Dienst des Unternehmens Google LLC, mit dessen Hilfe auf unserer Seite Orte auf Karten dargestellt werden können.
YouTube
YouTube ist ein Videoportal des Unternehmens Google LLC, bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. YouTube wird benutzt um Videos innerhalb der Seite abspielen zu können.
Vimeo
Vimeo ist ein Videoportal des Unternehmens Vimeo, Inc., bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. Vimeo wird benutzt um Videos innerhalb der Seite abspielen zu können.
Google Analytics
Google Analytics installiert die Cookie´s _ga und _gid. Diese Cookies werden verwendet um Besucher-, Sitzungs- und Kampagnendaten zu berechnen und die Nutzung der Website für einen Analysebericht zu erfassen. Die Cookies speichern diese Informationen anonym und weisen eine zufällig generierte Nummer Besuchern zu um sie eindeutig zu identifizieren.
Matomo
Matomo ist eine Open-Source-Webanwendung zur Analyse des Nutzerverhaltens beim Aufruf der Website.