Development of a computationally efficient progress variable approach for a direct injection stochastic reactor model

Andrea Matrisciano, Tim Franken, Cathleen Perlman, Anders Borg, Harry Lehtiniemi, Fabian Mauß

First published: 28 March 2017

Abstract

A novel 0-D Probability Density Function (PDF) based approach for the modelling of Diesel combustion using tabulated chemistry is presented. The Direct Injection Stochastic Reactor Model (DI-SRM) by Pasternak et al. has been extended with a progress variable based framework allowing the use of a pre-calculated auto-ignition table. Auto-ignition is tabulated through adiabatic constant pressure reactor calculations. The tabulated chemistry based implementation has been assessed against the previously presented DI-SRM version by Pasternak et al. where chemical reactions are solved online. The chemical mechanism used in this work for both, online chemistry run and table generation, is an extended version of the scheme presented by Nawdial et al. The main fuel species are n-decane, α-methylnaphthalene and methyl-decanoate giving a size of 463 species and 7600 reactions. A single-injection part-load heavy-duty Diesel engine case with 28 % EGR fueled with regular Diesel is investigated with both tabulated and online chemistry. Comparisons between the two approaches are presented by means of overall engine performance and engine-out emission predictions and in equivalence ratio-temperature space. The new implementation delivers reasonably good agreement with the online chemistry one. The methodology presented in this paper allows for the use of detailed chemistry in the DI-SRM with high computational efficiency and thus facilitates the use of the DI-SRM in the engine development process.

Read more

Privacy Policy & Cookie Settings 

We use cookies to provide you with the best possible content and functionality on our website. We also use cookies for analysis purposes. 

Go to the Privacy Policy and Cookie Settings. 

Agree with allOnly allow necessary cookies

Privacy policy & Cookie settings 

Please note that technically necessary cookies must be set in order to maintain the functionality of our website, as described in our privacy policy. We only use cookies for analysis purposes with your consent. Further details, in particular regarding the storage period and recipients, can be found in our privacy policy. You can adjust your selection in the cookie settings. 

PHP Sitzung
Das Cookie PHPSESSID ist für PHP-Anwendungen. Das Cookie wird verwendet um die eindeutige Session-ID eines Benutzers zu speichern und zu identifizieren um die Benutzersitzung auf der Website zu verwalten. Das Cookie ist ein Session-Cookie und wird gelöscht, wenn alle Browser-Fenster geschlossen werden.
Google Maps
Google Maps ist ein Karten-Dienst des Unternehmens Google LLC, mit dessen Hilfe auf unserer Seite Orte auf Karten dargestellt werden können.
YouTube
YouTube ist ein Videoportal des Unternehmens Google LLC, bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. YouTube wird benutzt um Videos innerhalb der Seite abspielen zu können.
Vimeo
Vimeo ist ein Videoportal des Unternehmens Vimeo, Inc., bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. Vimeo wird benutzt um Videos innerhalb der Seite abspielen zu können.
Google Analytics
Google Analytics installiert die Cookie´s _ga und _gid. Diese Cookies werden verwendet um Besucher-, Sitzungs- und Kampagnendaten zu berechnen und die Nutzung der Website für einen Analysebericht zu erfassen. Die Cookies speichern diese Informationen anonym und weisen eine zufällig generierte Nummer Besuchern zu um sie eindeutig zu identifizieren.
Matomo
Matomo ist eine Open-Source-Webanwendung zur Analyse des Nutzerverhaltens beim Aufruf der Website.