Advanced predictive diesel combustion simulation using turbulence model and stochastic reactor model

Tim Franken, Arnd Sommerhoff, Werner Willems, Andrea Matrisciano, Harry Lehtiniemi, Anders Borg, Corinna Netzer, Fabian Mauss

First published: 28 March 2017

Abstract

 
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models.
This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry. The advantage of the probability density function approach compared to mean value models is its capability to account for temperature and mixture inhomogeneities. Therefore, notional particles are introduced each with its own temperature and composition. The particle condition is changed by mixing, injection, vaporization, chemical reaction and heat transfer. Mixing is modeled using the one-dimensional Euclidean minimum spanning tree mixing model, which requires the scalar mixing frequency as input. Therefore, a turbulence model is proposed to calculate the mixing time depending on turbulent kinetic energy and its dissipation. The turbulence model accounts for density, swirl, squish and injection effects on turbulent kinetic energy within the combustion chamber. Finally, the 0D stochastic reactor model is tested for 40 different operating points distributed over the whole engine map. The results show a close match of experimental heat release rate and NOx emissions. The trends of measured CO and HC concentrations are captured qualitatively. Additionally, the 0D simulation results are compared to more detailed 3D CFD combustion simulation results for three operating points differing in engine speed and load. The comparison shows that the 0D stochastic reactor model is able to capture turbulence effects on local temperature and mixture distribution, which in turn affect NOx, CO and HC emission formation. Overall, the 0D stochastic reactor model has proven its predictive capability for the investigated diesel engine and can be assigned to tasks concerning engine map simulation and parameter sweeps.

Read more

Privacy Policy & Cookie Settings 

We use cookies to provide you with the best possible content and functionality on our website. We also use cookies for analysis purposes. 

Go to the Privacy Policy and Cookie Settings. 

Agree with allOnly allow necessary cookies

Privacy policy & Cookie settings 

Please note that technically necessary cookies must be set in order to maintain the functionality of our website, as described in our privacy policy. We only use cookies for analysis purposes with your consent. Further details, in particular regarding the storage period and recipients, can be found in our privacy policy. You can adjust your selection in the cookie settings. 

PHP Sitzung
Das Cookie PHPSESSID ist für PHP-Anwendungen. Das Cookie wird verwendet um die eindeutige Session-ID eines Benutzers zu speichern und zu identifizieren um die Benutzersitzung auf der Website zu verwalten. Das Cookie ist ein Session-Cookie und wird gelöscht, wenn alle Browser-Fenster geschlossen werden.
Google Maps
Google Maps ist ein Karten-Dienst des Unternehmens Google LLC, mit dessen Hilfe auf unserer Seite Orte auf Karten dargestellt werden können.
YouTube
YouTube ist ein Videoportal des Unternehmens Google LLC, bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. YouTube wird benutzt um Videos innerhalb der Seite abspielen zu können.
Vimeo
Vimeo ist ein Videoportal des Unternehmens Vimeo, Inc., bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. Vimeo wird benutzt um Videos innerhalb der Seite abspielen zu können.
Google Analytics
Google Analytics installiert die Cookie´s _ga und _gid. Diese Cookies werden verwendet um Besucher-, Sitzungs- und Kampagnendaten zu berechnen und die Nutzung der Website für einen Analysebericht zu erfassen. Die Cookies speichern diese Informationen anonym und weisen eine zufällig generierte Nummer Besuchern zu um sie eindeutig zu identifizieren.
Matomo
Matomo ist eine Open-Source-Webanwendung zur Analyse des Nutzerverhaltens beim Aufruf der Website.