Soot simulation under diesel engine conditions using a flamelet approach
Galin Nakov, Fabian Mauss, Paul Wenzel, Rüdiger Steiner, Christian Krüger, Yongzhe Zhang, Rajesh Rawat, Anders Borg, Cathleen Perlman, Karin Fröjd, Harry Lehtiniemi
Abstract
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library. We investigated typical part-load operating points and a good agreement with the experimental data for soot in the exhaust gas was achieved when accounting for acetylene feedback.