Reaction Kinetics of NH2 Radicals with Dimethyl Ether (DME) and Diethyl Ether (DEE) and Their Implications in NH3-DME/DEE blend modeling
Krishna Prasad Shrestha, Tam V–T Mai, Sushant Giri, Binod Raj Giri, Lam K Huynh, Fabian Mauss
Abstract
The reactions of amino radicals (NH2) play a vital role in governing the combustion behaviour of various nitrogen-rich chemical systems such as ammonia, coal nitrogen gasification, and biomass. Ammonia has recently gained considerable attention in the combustion community. Since it is a carbon-free fuel, it can help combat global warming by decarbonizing the energy sectors. However, several reports in the literature highlight the importance of the NH3-dual fuel approach to boost the combustion properties of neat ammonia. For combustion modeling of NH3-dual fuel systems, accurate knowledge of the cross-reactions between the nitrogen and carbon family is very critical. Several earlier studies have shown the influence of NH2 radical reactions with the fuel (combustion promoter) in accurately predicting the low- temperature combustion behaviour of NH3-dual fuels (see Giri et al. and references cited therein). The reactions of NH2 radicals are not only important in the combustion environment but also, they are relevant to the chemistry of planetary atmospheres. In this work, we investigated the hydrogen abstraction reactions of NH2 radials with dimethyl ether (DME) and diethyl ether (DEE) using a high-level quantum method combined with the statistical rate theory. We implemented the derived rate coefficients in our kinetic model to identify its effect in the combustion modeling of NH3-DME/DEE blends.