Prediction of thermal stratification in an engine-like geometry using a zero-dimensional stochastic reactor model

Tim Franken, Christian Klauer, Martin Kienberg, Andrea Matrisciano, Fabian Mauss

First published: 21 January 2019

Abstract

The prediction of local heat transfer and thermal stratification in the zero-dimensional stochastic reactor model is compared to direct numerical simulation published by Schmitt et al. in 2015. Direct numerical simulation solves the Navier–Stokes equations without incorporating model assumptions for turbulence and wall heat transfer. Therefore, it can be considered as numerical experiment and is suitable to validate approximations in low-dimensional models. The stochastic reactor model incorporates a modified version of the Euclidean Minimum Spanning Tree mixing model proposed by Subramaniam et al. in 1998. To capture the thermal stratification of the direct numerical simulation, the total enthalpy (H) is used as the only mixing limiting scalar within the newly proposed H-Euclidean-Minimum-Spanning-Tree. Furthermore, a stochastic heat transfer model is incorporated to mimic turbulence effects on local heat transfer distribution to the walls. By adjusting the Cϕ mixing time and Ch stochastic heat transfer parameter, the stochastic reactor model predicts accurately the thermal stratification of the direct numerical simulation. Comparing the Woschni, Hohenberg and Heinle heat transfer model shows that the modified Heinle model matches accurately the direct numerical simulation results. Thereby, the Heinle model accounts for the influence of turbulent kinetic energy on the characteristic velocity in the heat transfer coefficient calculation. This highlights the importance of incorporating turbulence effects in low-dimensional heat transfer models. Overall, the zero-dimensional stochastic reactor model with the H-Euclidean-Minimum-Spanning-Tree mixing model, the stochastic heat transfer model and the modified Heinle correlation have proven successfully the prediction of mean quantities like temperature and heat transfer and thermal stratification of the direct numerical simulation.

Read more

Privacy Policy & Cookie Settings 

We use cookies to provide you with the best possible content and functionality on our website. We also use cookies for analysis purposes. 

Go to the Privacy Policy and Cookie Settings. 

Agree with allOnly allow necessary cookies

Privacy policy & Cookie settings 

Please note that technically necessary cookies must be set in order to maintain the functionality of our website, as described in our privacy policy. We only use cookies for analysis purposes with your consent. Further details, in particular regarding the storage period and recipients, can be found in our privacy policy. You can adjust your selection in the cookie settings. 

PHP Sitzung
Das Cookie PHPSESSID ist für PHP-Anwendungen. Das Cookie wird verwendet um die eindeutige Session-ID eines Benutzers zu speichern und zu identifizieren um die Benutzersitzung auf der Website zu verwalten. Das Cookie ist ein Session-Cookie und wird gelöscht, wenn alle Browser-Fenster geschlossen werden.
Google Maps
Google Maps ist ein Karten-Dienst des Unternehmens Google LLC, mit dessen Hilfe auf unserer Seite Orte auf Karten dargestellt werden können.
YouTube
YouTube ist ein Videoportal des Unternehmens Google LLC, bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. YouTube wird benutzt um Videos innerhalb der Seite abspielen zu können.
Vimeo
Vimeo ist ein Videoportal des Unternehmens Vimeo, Inc., bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. Vimeo wird benutzt um Videos innerhalb der Seite abspielen zu können.
Google Analytics
Google Analytics installiert die Cookie´s _ga und _gid. Diese Cookies werden verwendet um Besucher-, Sitzungs- und Kampagnendaten zu berechnen und die Nutzung der Website für einen Analysebericht zu erfassen. Die Cookies speichern diese Informationen anonym und weisen eine zufällig generierte Nummer Besuchern zu um sie eindeutig zu identifizieren.
Matomo
Matomo ist eine Open-Source-Webanwendung zur Analyse des Nutzerverhaltens beim Aufruf der Website.