Particle size distribution functions in laminar and turbulent flames

Fabian Mauss, Karl Netzell, Caroline Marchal, Gladys Moréac

First published: 13 November 2014

Abstract

The formation of soot in flames results from a number of complex physical and chemical
processes. Several of these processes are still not fully understood and modelling soot
formation still relies on empirical assumptions. In addition to the complexity of the problem
the modeller was in the past confronted to the fact that the experimental data were limited to
measurements of global quantities; i.e. number density and soot volume fraction, namely the
first and second moment of the particle size distribution function (PSDF) [1,2]. Information
about the PSDF or the shape and consistency of soot particles have been very rare [3]. For the
latter, probes from particulates through thermophoretic sampling in flames were taken. Today,
measurements of particle size distribution functions are available for simple flame
configurations [4,5]. Until the late nineties modelling soot formation was directed towards understanding the most sensitive processes only. Model validation was performed by comparing calculated profiles of soot volume fraction against experimental data. This caused, that most mathematical methods describing the soot PSDF included the first and second moment of the PSDF only [6,7]. These developments have been consolidated through the formulation of the method of moments with interpolative closure (MoM) for soot particles and the soot precursors, rigorously deriving the governing equations for any moment of the PSDF. At the same time the hydrogen abstraction carbon addition mechanism was introduced as the major chemical growth mechanism for soot particles [8,9,10]. In [11] it was shown that the HACA mechanism can explain the sensitivity of soot formation on varying H and H2 concentration in the flame. In [11,12] the method of moments was formulated including convection, size dependent diffusion and thermophorezes. The absolute amount for the soot volume fraction was often adjusted by optimizing the active site coefficient, as in ref. [13], where it was made temperature dependent to cover a full regime of experimental data. This limited the validation of the models to validating the general trends, i.e. pressure dependence, fuel dependence etc. . Comparison of calculated and measured soot number densities suffered often from the fact, that the numerical models include particles down to sizes of 1 nm, while the experimental data were limited to certain sizes. Measurements of particle size distribution functions as presented in [6,7] offer additional information on the processes of soot formation in flames. The ratio, of particle inception, surface reactions and coagulation decide on the modality of the PSDF, the gradient of Particle concentration with size in the nucleation mode, the valley between nucleation mode and the coagulation mode, and the width of the distribution in the coagulation mode. In this study a sectional method is chosen to model the PSDF in laminar premixed flames [5]. The sectional method – as the method of moments – has the advantage, that transport equations can be formulated without any further approximations. This allows applying the method in turbulent diffusion flames using the interactive flamelet model. First calculations with this model show that particles with large sizes can break through the reaction layer of turbulent diffusion flames [14].

 

Read more

Privacy Policy & Cookie Settings 

We use cookies to provide you with the best possible content and functionality on our website. We also use cookies for analysis purposes. 

Go to the Privacy Policy and Cookie Settings. 

Agree with allOnly allow necessary cookies

Privacy policy & Cookie settings 

Please note that technically necessary cookies must be set in order to maintain the functionality of our website, as described in our privacy policy. We only use cookies for analysis purposes with your consent. Further details, in particular regarding the storage period and recipients, can be found in our privacy policy. You can adjust your selection in the cookie settings. 

PHP Sitzung
Das Cookie PHPSESSID ist für PHP-Anwendungen. Das Cookie wird verwendet um die eindeutige Session-ID eines Benutzers zu speichern und zu identifizieren um die Benutzersitzung auf der Website zu verwalten. Das Cookie ist ein Session-Cookie und wird gelöscht, wenn alle Browser-Fenster geschlossen werden.
Google Maps
Google Maps ist ein Karten-Dienst des Unternehmens Google LLC, mit dessen Hilfe auf unserer Seite Orte auf Karten dargestellt werden können.
YouTube
YouTube ist ein Videoportal des Unternehmens Google LLC, bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. YouTube wird benutzt um Videos innerhalb der Seite abspielen zu können.
Vimeo
Vimeo ist ein Videoportal des Unternehmens Vimeo, Inc., bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. Vimeo wird benutzt um Videos innerhalb der Seite abspielen zu können.
Google Analytics
Google Analytics installiert die Cookie´s _ga und _gid. Diese Cookies werden verwendet um Besucher-, Sitzungs- und Kampagnendaten zu berechnen und die Nutzung der Website für einen Analysebericht zu erfassen. Die Cookies speichern diese Informationen anonym und weisen eine zufällig generierte Nummer Besuchern zu um sie eindeutig zu identifizieren.
Matomo
Matomo ist eine Open-Source-Webanwendung zur Analyse des Nutzerverhaltens beim Aufruf der Website.