Extinction and NO formation of ammonia-hydrogen and air non-premixed counterflow flames
Daniel E Thomas, Krishna P Shrestha, Fabian Mauss, William F Northrop
Abstract
. For these conditions, NO concentration increases with both strain rate and fuel hydrogen content. The previously published kinetic model developed by the authors is used to perform one-dimensional flame simulations of the experimental setup and conditions, and results are compared to three other recently published ammonia mechanisms. None of the selected models satisfactorily predict both the measured extinction strain rate and flame NO concentration. The models mainly fail to predict extinction strain rate at higher H fraction and NO formation at the highest experimental strain rates and H fraction. The reaction rate parameters for some of the key reactions in the published model developed by authors were updated to improve agreement with experimental results. The updated model results are closely aligned with extinction strain rate measurements, and have improved prediction of flame NO concentration. The model reveals that the reactions from the NH and NH sub-mechanism are sensitive in predicting the extinction strain rate as well as NO. In particular, the reaction NH+NO=NO+H had significant impact on NO predictions.