Development of ammonia-biodiesel fueled agricultural tractor: Aspects of retrofitting a compression ignition engine to direct ammonia injection
Michał Pasternak, Grzegorz Przybyła, Reddy Siddareddy, Michał Lewandowski, Karl Bjørgen, Fabian Mauss, Ebrahim Nadimi, Grzegorz Peczkis, Min-min Zhou, Wojciech Adamczyk
First published: 3 May 2025
Abstract
The automotive industry has shown growing interest in ammonia as a carbon-free fuel, which holds potential for mitigating the greenhouse effect. Nonetheless, adapting current combustion engines to use ammonia necessitates prior modifications. This paper introduces a retrofitting technique for converting an existing compression ignition engine into one powered by a direct injection of ammonia and biodiesel. The development results from collaboration between Polish and Norwegian research teams as part of the ACTIVATE project (Ammonia as carbon-free fuel for internal combustion engine-driven agricultural vehicles). The new technology is grounded on experimental and numerical research involving a single-cylinder engine installed in a small agricultural tractor. Biodiesel was directly injected to initiate ammonia combustion. Experimental activities were performed on engine test benches and a chassis dynamometer, complemented by 0D and 3D simulations using the stochastic reactor model and CFD code Converge, respectively. A comprehensive exploration of engine operating conditions and fuel injection strategies was undertaken experimentally and numerically to assess the potential benefits and drawbacks of various designs. A segment of the research focused on analyzing nitrous oxide formation, given its significant impact on global warming. The investigations resulted in a method for combusting ammonia with biodiesel as an ignition enhancer. It was determined that maintaining a stable engine operation in a tractor under real driving scenarios requires 47% of the energy sourced from ammonia. Optimal engine performance occurs when ammonia and biodiesel are injected near the end of the compression stroke, closely followed by the ignition promoter. A prolonged interval between these injections impairs combustion efficiency and raises ammonia emissions. The integrated numerical and experimental research resulted in a demonstration tractor fueled by directly injected biodiesel and ammonia.