Computationally efficient prediction of cycle-to-cycle variations in spark-ignition engines

Corinna Netzer, Michal Pasternak, Lars Seidel, Frédéric Ravet, Fabian Mauss

First published: 13 June 2020

Abstract

Cycle-to-cycle variations are important to consider in the development of spark-ignition engines to further increase fuel conversion efficiency. Direct numerical simulation and large eddy simulation can predict the stochastics of flows and therefore cycle-to-cycle variations. However, the computational costs are too high for engineering purposes if detailed chemistry is applied. Detailed chemistry can predict the fuels’ tendency to auto-ignite for different octane ratings as well as locally changing thermodynamic and chemical conditions which is a prerequisite for the analysis of knocking combustion. In this work, the joint use of unsteady Reynolds-averaged Navier–Stokes simulations for the analysis of the average engine cycle and the spark-ignition stochastic reactor model for the analysis of cycle-to-cycle variations is proposed. Thanks to the stochastic approach for the modeling of mixing and heat transfer, the spark-ignition stochastic reactor model can mimic the randomness of turbulent flows that is missing in the Reynolds-averaged Navier–Stokes modeling framework. The capability to predict cycle-to-cycle variations by the spark-ignition stochastic reactor model is extended by imposing two probability density functions. The probability density function for the scalar mixing time constant introduces a variation in the turbulent mixing time that is extracted from the unsteady Reynolds-averaged Navier–Stokes simulations and leads to variations in the overall mixing process. The probability density function for the inflammation time accounts for the delay or advancement of the early flame development. The combination of unsteady Reynolds-averaged Navier–Stokes and spark-ignition stochastic reactor model enables one to predict cycle-to-cycle variations using detailed chemistry in a fraction of computational time needed for a single large eddy simulation cycle.

Read more

Privacy Policy & Cookie Settings 

We use cookies to provide you with the best possible content and functionality on our website. We also use cookies for analysis purposes. 

Go to the Privacy Policy and Cookie Settings. 

Agree with allOnly allow necessary cookies

Privacy policy & Cookie settings 

Please note that technically necessary cookies must be set in order to maintain the functionality of our website, as described in our privacy policy. We only use cookies for analysis purposes with your consent. Further details, in particular regarding the storage period and recipients, can be found in our privacy policy. You can adjust your selection in the cookie settings. 

PHP Sitzung
Das Cookie PHPSESSID ist für PHP-Anwendungen. Das Cookie wird verwendet um die eindeutige Session-ID eines Benutzers zu speichern und zu identifizieren um die Benutzersitzung auf der Website zu verwalten. Das Cookie ist ein Session-Cookie und wird gelöscht, wenn alle Browser-Fenster geschlossen werden.
Google Maps
Google Maps ist ein Karten-Dienst des Unternehmens Google LLC, mit dessen Hilfe auf unserer Seite Orte auf Karten dargestellt werden können.
YouTube
YouTube ist ein Videoportal des Unternehmens Google LLC, bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. YouTube wird benutzt um Videos innerhalb der Seite abspielen zu können.
Vimeo
Vimeo ist ein Videoportal des Unternehmens Vimeo, Inc., bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. Vimeo wird benutzt um Videos innerhalb der Seite abspielen zu können.
Google Analytics
Google Analytics installiert die Cookie´s _ga und _gid. Diese Cookies werden verwendet um Besucher-, Sitzungs- und Kampagnendaten zu berechnen und die Nutzung der Website für einen Analysebericht zu erfassen. Die Cookies speichern diese Informationen anonym und weisen eine zufällig generierte Nummer Besuchern zu um sie eindeutig zu identifizieren.
Matomo
Matomo ist eine Open-Source-Webanwendung zur Analyse des Nutzerverhaltens beim Aufruf der Website.