A tabulated, flamelet based no model for large eddy simulations of non premixed turbulent jets with enthalpy loss
Carlo Locci, Olivier Colin, Damien Poitou, Fabian Mauss
Abstract
Three LES models devoted to the NO prediction in under-adiabatic furnaces are evaluated in this paper: the NORA (NO relaxation Approach) model, based on the NO relaxation towards equilibrium, the linear model (LM) which employs a linear relation to rescale the NO consumption rate, and a new model, DF-NORA, in which the linear approximation of the LM is replaced by a tabulation of the reaction rate as a function of a NO progress variable. To generate this table, NO relaxation complex chemistry calculations are used like in NORA, but the homogeneous reactor is replaced by a steady laminar diffusion flame. These models are validated on Sandia Flame D and on the flameless case of Verissimo et al. (Ener. Fuel. 25, 2469–2480 ([32])). For both cases, NORA underpredicts the NO production due to its insensitivity to strain, while LM overpredicts NO by a factor 2 on Flame D and a factor 13 on the flameless case. DF-NORA presents the best prediction with a maximal underprediction of 30% on Flame D and an over-prediction of 30% on the final NO yield of the flameless case. The impact of a radiative source term is also assessed on Flame D, showing a local decrease of NO by less than 7% compared to the adiabatic calculation for the DF-NORA model.