A fast tool for predictive IC engine in-cylinder modelling with detailed chemistry

Cathleen Perlman, Karin Frojd, Lars Seidel, Martin Tuner, Fabian Mauss

First published: 16 April 2012

Abstract

 
This paper reports on a fast predictive combustion tool employing detailed chemistry. The model is a stochastic reactor based, discretised probability density function model, without spatial resolution. Employing detailed chemistry has the potential of predicting emissions, but generally results in very high CPU costs. Here it is shown that CPU times of a couple of minutes per cycle can be reached when applying detailed chemistry, and CPU times below 10 seconds per cycle can be reached when using reduced chemistry while still catching in-cylinder in-homogeneities. This makes the tool usable for efficient engine performance mapping and optimisation.
To meet CPU time requirements, automatically load balancing parallelisation was included in the model. This allowed for an almost linear CPU speed-up with number of cores available. As the number of cores increased, temporarily idle CPU's and computer cluster overhead cost was found to start affecting the overall CPU cost, but speed-up was observed up to 200 cores.
A clustering algorithm allowing for any number of controlling parameters was further utilised. The algorithm clusters the different particles based on user provided parameters and dispersion thresholds. After finishing the chemistry step, the clustered solutions are mapped back to the individual particles while preserving each individual particle's distance from its cluster mean. The clustering algorithm was found to give a larger CPU speed-up the more particles were used and also to be effective both for detailed and reduced chemical mechanisms.

Read more

Privacy Policy & Cookie Settings 

We use cookies to provide you with the best possible content and functionality on our website. We also use cookies for analysis purposes. 

Go to the Privacy Policy and Cookie Settings. 

Agree with allOnly allow necessary cookies

Privacy policy & Cookie settings 

Please note that technically necessary cookies must be set in order to maintain the functionality of our website, as described in our privacy policy. We only use cookies for analysis purposes with your consent. Further details, in particular regarding the storage period and recipients, can be found in our privacy policy. You can adjust your selection in the cookie settings. 

PHP Sitzung
Das Cookie PHPSESSID ist für PHP-Anwendungen. Das Cookie wird verwendet um die eindeutige Session-ID eines Benutzers zu speichern und zu identifizieren um die Benutzersitzung auf der Website zu verwalten. Das Cookie ist ein Session-Cookie und wird gelöscht, wenn alle Browser-Fenster geschlossen werden.
Google Maps
Google Maps ist ein Karten-Dienst des Unternehmens Google LLC, mit dessen Hilfe auf unserer Seite Orte auf Karten dargestellt werden können.
YouTube
YouTube ist ein Videoportal des Unternehmens Google LLC, bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. YouTube wird benutzt um Videos innerhalb der Seite abspielen zu können.
Vimeo
Vimeo ist ein Videoportal des Unternehmens Vimeo, Inc., bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. Vimeo wird benutzt um Videos innerhalb der Seite abspielen zu können.
Google Analytics
Google Analytics installiert die Cookie´s _ga und _gid. Diese Cookies werden verwendet um Besucher-, Sitzungs- und Kampagnendaten zu berechnen und die Nutzung der Website für einen Analysebericht zu erfassen. Die Cookies speichern diese Informationen anonym und weisen eine zufällig generierte Nummer Besuchern zu um sie eindeutig zu identifizieren.
Matomo
Matomo ist eine Open-Source-Webanwendung zur Analyse des Nutzerverhaltens beim Aufruf der Website.