A detailed chemical insights into the kinetics of diethyl ether enhancing ammonia combustion and the importance of NOx recycling mechanism

Krishna Prasad Shrestha, Binod Raj Giri, Ayman M Elbaz, Gani Issayev, William L Roberts, Lars Seidel, Fabian Mauß, Aamir Farooq

First published: 01 March 2022

Abstract

In this work, we investigated the combustion characteristics of ammonia (NH3) by blending it with various proportions of diethyl ether (DEE). We measured laminar flame speed of various NH3/DEE blends (DEE, 10–40% by mole) using a constant volume spherical vessel at Ti = 298 K and Pi = 3 and 5 bar and Φ = 0.8–1.3. We developed a detailed kinetic model to describe the trends of the current and previously published experimental data. For the robustness of the model, we first developed a comprehensive diethyl ether kinetic mechanism to accurately characterize neat DEE oxidation behavior. We validated the kinetic model using a large pool of experimental data comprising shock tube, rapid compression machine, jet-stirred and flow reactors, freely propagating, and burner-stabilized premixed flames. The developed kinetic model performs remarkably in capturing the combustion behavior of pure DEE and NH3. Importantly, our model captures the experimental data of laminar flame speed and ignition delay times of various NH3/DEE blends over a wide range of conditions. We found that DEE is a promising candidate to promote the combustion characteristics of NH3. A small portion of DEE (10%) enhances the laminar flame speed of NH3 by a factor of 2 at Pi = 1 bar, Ti = 298 K, and Φ = 1.0. A further doubling of the DEE mole fraction to 20% did not enhance the laminar flame speed of NH3 with the same propensity. At low temperatures, adding 5% DEE in NH3 blend has significantly expedited the system reactivity by lowering the autoignition temperature. A further 5% increment of DEE (i.e., 10% DEE in NH3) lowers the autoignition temperature by ∼120 K to achieve the same ignition delay time. The “NOsingle bondNO2” looping mechanism predominantly drives such reactivity accelerating effect. Here, the reactions, NO + HO2 = NO2 + OH and NO2 + H = NO + OH, appear to enhance the reactive radical pool by generating OH radicals. We observed that the HNO path is favored more with increasing DEE content which eventually liberates NO. Other key reactions in “NOsingle bondNO2” looping mechanism are: CH3 + NO2 = CH3O + NO, CH3O2 + NO = CH3O + NO2, C2H5 + NO2 = C2H5O + NO, C2H5O2 + NO = C2H5O + NO2. In addition, CH3 + NH2(+M) = CH3NH2(+M) reaction is also one of the important cross-reactions which leads to the formation of HCN. Therefore, cross-reactions between the nitrogen and carbon family are crucial in accurately predicting autoignition timing. This work provides a detailed chemical insight into the NH3 and DEE interaction, which could be applied to other fuel blends of NH3. The kinetic model is also validated for several C1single bondC3 fuels including their interaction with NOx.

Read more

Privacy Policy & Cookie Settings 

We use cookies to provide you with the best possible content and functionality on our website. We also use cookies for analysis purposes. 

Go to the Privacy Policy and Cookie Settings. 

Agree with allOnly allow necessary cookies

Privacy policy & Cookie settings 

Please note that technically necessary cookies must be set in order to maintain the functionality of our website, as described in our privacy policy. We only use cookies for analysis purposes with your consent. Further details, in particular regarding the storage period and recipients, can be found in our privacy policy. You can adjust your selection in the cookie settings. 

PHP Sitzung
Das Cookie PHPSESSID ist für PHP-Anwendungen. Das Cookie wird verwendet um die eindeutige Session-ID eines Benutzers zu speichern und zu identifizieren um die Benutzersitzung auf der Website zu verwalten. Das Cookie ist ein Session-Cookie und wird gelöscht, wenn alle Browser-Fenster geschlossen werden.
Google Maps
Google Maps ist ein Karten-Dienst des Unternehmens Google LLC, mit dessen Hilfe auf unserer Seite Orte auf Karten dargestellt werden können.
YouTube
YouTube ist ein Videoportal des Unternehmens Google LLC, bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. YouTube wird benutzt um Videos innerhalb der Seite abspielen zu können.
Vimeo
Vimeo ist ein Videoportal des Unternehmens Vimeo, Inc., bei dem die Benutzer auf dem Portal Videoclips ansehen, bewerten, kommentieren und selbst hochladen können. Vimeo wird benutzt um Videos innerhalb der Seite abspielen zu können.
Google Analytics
Google Analytics installiert die Cookie´s _ga und _gid. Diese Cookies werden verwendet um Besucher-, Sitzungs- und Kampagnendaten zu berechnen und die Nutzung der Website für einen Analysebericht zu erfassen. Die Cookies speichern diese Informationen anonym und weisen eine zufällig generierte Nummer Besuchern zu um sie eindeutig zu identifizieren.
Matomo
Matomo ist eine Open-Source-Webanwendung zur Analyse des Nutzerverhaltens beim Aufruf der Website.