

Co-Simulation Platform Connecting Chemistry and Powertrain Dynamics to Traffic Simulation

Project overview

LOGE GmbH & VKA RWTH Aachen

March 2020

Agenda

- Background
- Project goal
- Consortium
- Solution concept
- Development stages
- **Implementation**
- Project impact
- **Progress**

Background | Emission gap: reality vs laboratory

Since September 1, 2017, passenger car emissions have been measured under real conditions

Source: Bosch

"normal driving" required, but coverage of 95%+ of EU driving expected.
Considered as parameter of highest influence

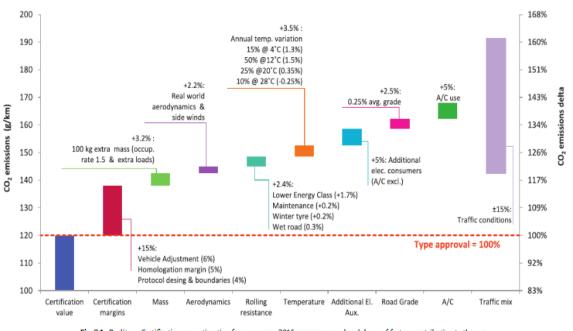
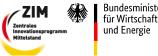


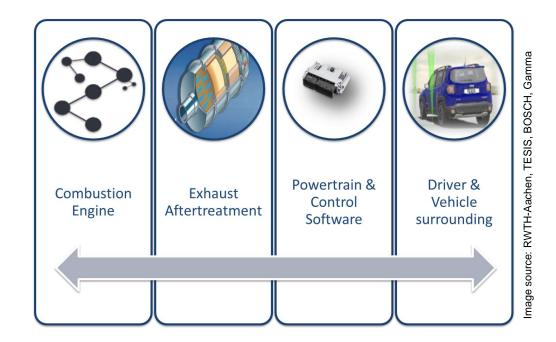
Fig. 7.1. Reality vs Certification gap estimation for an average 2015 passenger car; breakdown of factors contributing to the gap.

Source: Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions IGeorgios Fontaras, Nikiforos-Georgios Zacharof, Biagio Ciuffo https://doi.org/10.1016/j.pecs.2016.12.004

Solution: measurement- or simulation(virtual)-based vehicle calibration and optimisation for real driving conditions



Background | Motivation for virtual calibration



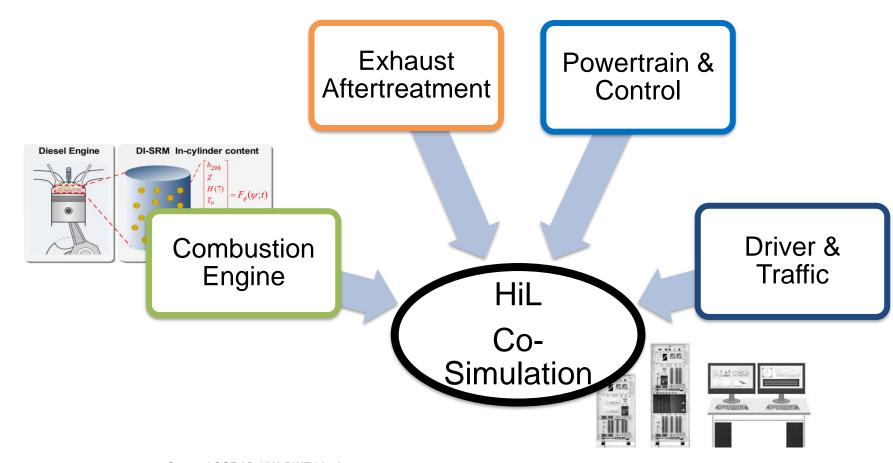
Lower interest in developing new combustion systems, but high pressure on cost-effective product and process

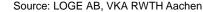
Expensive development and calibration procedures that rely on measurements on engine/vehicle test benches

Simulation based front-loading enables cost reduction, efficiency increase and quality improvement

- Computer Aided Engineering (CAE) tools are used to reduce cost and time of powertrain development ECU calibration.
- Hardware-in-the-Loop (HiL) / X-in-the-Loop (XiL) platforms allow the integration of CAE tools in the powertrain development and ECU online calibration.
- Incorporation in the XiL platform <u>physical-based models</u> is essential to increase the accuracy of simulations and the acceptance of the novel HiL co-simulation model toolbox.
- The virtualization of test drives for <u>Real Driving Emissions</u> (<u>RDE</u>) requires a <u>holistic simulation approach</u>; to meet the requirements; incorporation of combustion → aftertreatment → powertrain → vehicle → driver → traffic; <u>multi-level cosimulation</u>

Hardware-in-the-Loop (HiL) as a key for efficient development of environmentally friendly vehicle powertrains





Project goal

- LOGE-RT engine software employing detailed chemistry for real-time emissions prediction for RDE applications of a compression ignition diesel engine
- Co-simulation of LOGE-RT 0D physics-based model for Hardware-in-the-Loop based applications

Consortium

XiL Platform

Simulation framework for virtual prototyping/ECU calibration

LOGE-RT

Modelling of engine in-cylinder processes

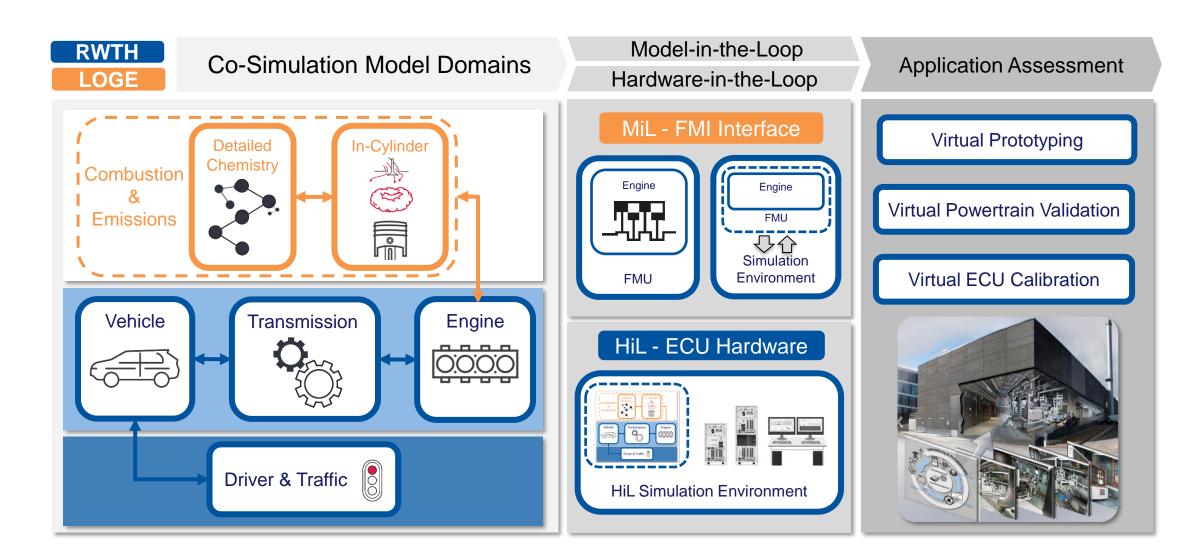
Consortium | Team members

Prof. Dr.-Ing. Fabian Mauss

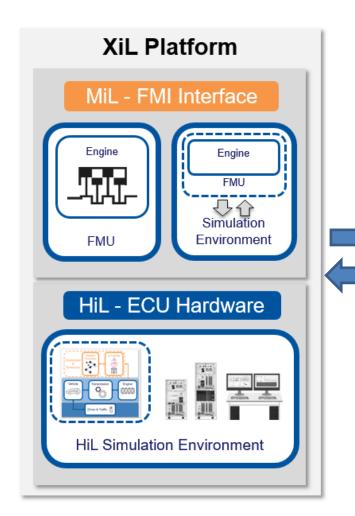
- > CEO
- ➤ LOGE GmbH
- Technology and Research Centre
- ➤ Burger Chaussee 25
- D-03044 Cottbus, Germany
- Phone +49 171 789 0848
- > fabian.mauss@logesoft.com
- www.logesoft.com

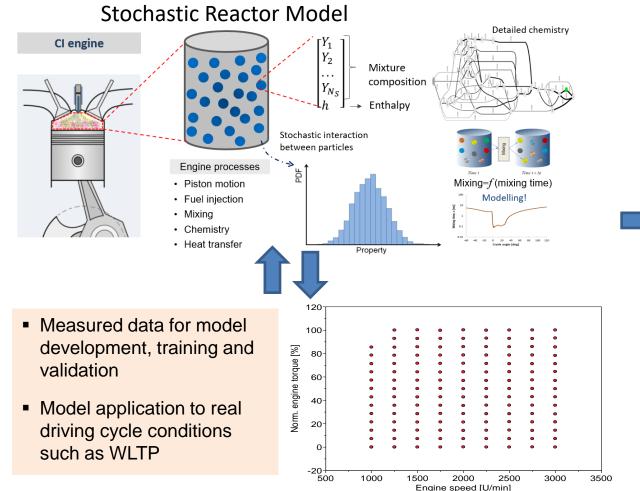
Prof. Dr.-Ing. Jakob Andert

- Juniorprofessur for Mechatronic Systems for Combustion Engines
- RWTH Aachen University
- Forckenbeckstraße 4
- D-52074 Aachen, Germany
- Telefon +49 241 80-48071
- Fax +49 241 80-92630
- andert@vka.rwth-aachen.de
- www.mechatronics.rwth-aachen.de
- www.vka.rwth-aachen.de



Solution concept

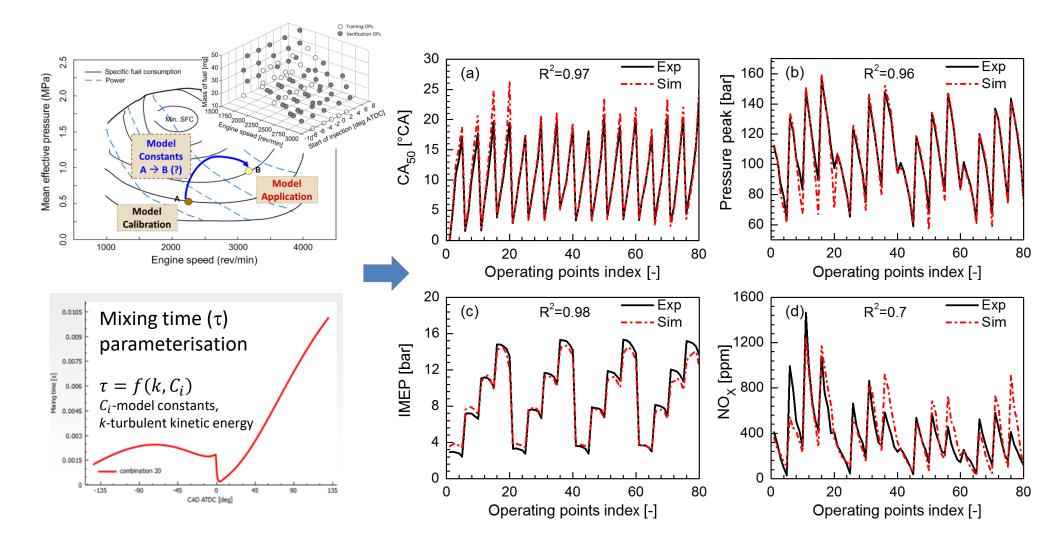




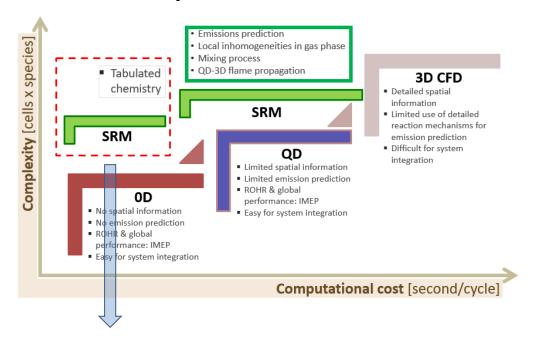
Solution concept | Engine cylinder modelling

LOGE-RT based on SRM and 1D full engine model in GTP

ECU calibration



Engine performance mapping using LOGE SRM



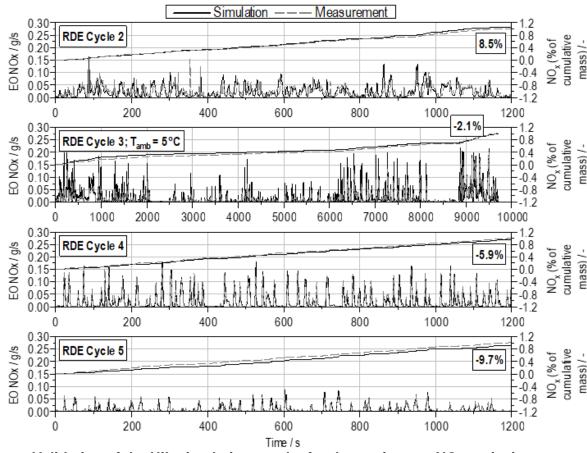
Towards real time driving cycle simulations

LOGE SRM | Relation to other methods

- Possibility to use complex fuel surrogates with no drawback on computational cost
- Advantages for full cycle simulations and control algorithms development and optimisation

Tabulated chemistry

- Instead of using product species as indicators of the reaction progress, the evolution of the chemistry is parametrized with a progress variable (C) using chemical enthalpy (h298) $C = (h_{298} h_{298,0})/(h_{298,maxHR} h_{298,0})$
- Detailed chemistry scheme is pre-compiled in a look-up table containing dc/dt source, molar mass of the mixture, polynomial coefficients, species to be monitored and emissions source terms; the look-up tableparameters are pressure, unburned temperature, equivalence ratio and EGR



Bundesministerium für Wirtschaft und Energie

HiL modeling approach using physics-based engine model

- The engine model is calibrated using steady-state engine mapping from the test bench
- Achieved cycle NOx emission target ±10% set during the project begin
- Effort for HiL system set-up
 - Depending upon the verified inputs (hardware information, measurement data, ECU, rest bus simulation, etc.) required for the HiL set-up

Validation of the HiL simulation results for the engine-out NOx emission

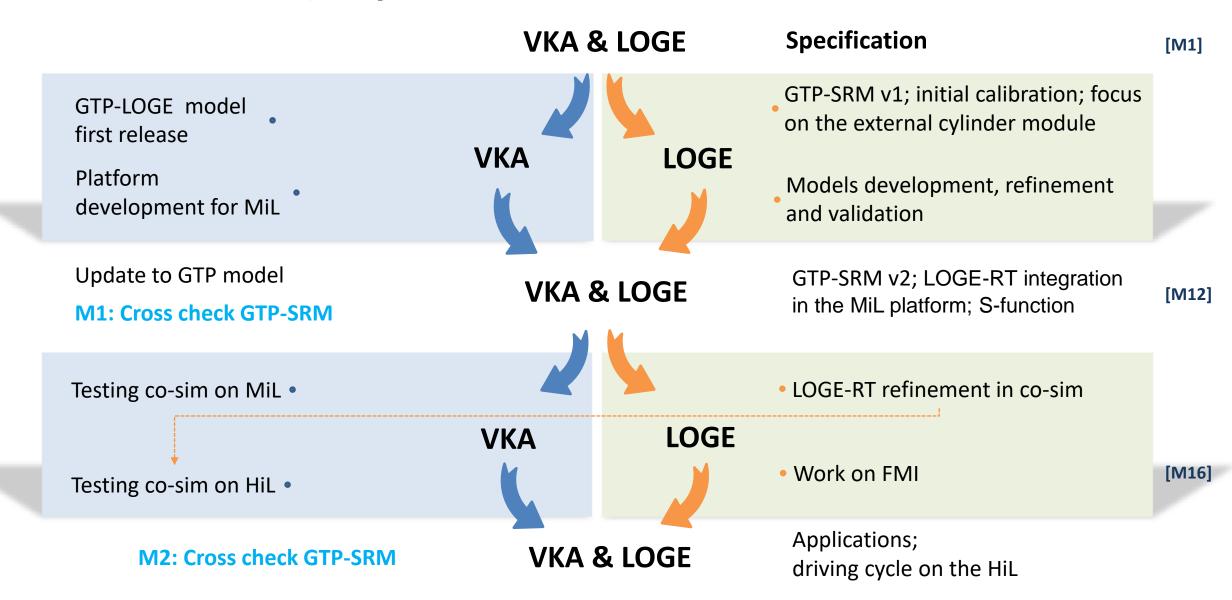
Source: Virtual Real driving environment and emissions: a road towards XiL-based digitalization of the powertrain calibration, International Conference on Calibration Methods and Automotive Data Analytics May 21–22, 2019, Berlin

Relevant publications

Lee, S.; Andert, J.; Hardware-in-the-Loop-Based Virtual Calibration Approach to Meet Real Driving Emissions Requirements. In: SAE Int. Journal Engines.

Lee, S.; Andert, J.; Pischinger, S.; Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability. In: WCX SAE World Congress Experience: (SAE Technical Paper Series).

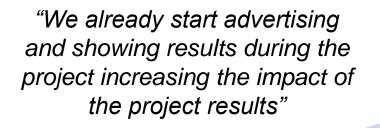
Joerg, C.; Lee, S.: Accurate Mean Value Process Models for Model-Based Engine Control Concepts by Means of Hybrid Modeling. In: WCX SAE World Congress Experience: (SAE Technical Paper Series).



Development stages | Overview

Development stages | Work packages

W	P1	Specification	
Test engine, Fuel specification, Operating points selection, RDE application case, Input- and output for co-sim;			
WP2		Real-time engine model	
RT applications Modelling updates: 0D turbulence, vaporization, heat transfer			
alidation Optimizations of sub-models (time and accuracy)			
LOGE-RT on the MiL platform			
W	Р3	Real-time tabulated chemistry	
s for RT compilation	or RT compilation Interpolation method for tabulated chemistry		
HiL specification Automated calibration of emission para		calibration of emission parameters	
Integration of LOGE-RT on the HiL platform			
W	P4	Functional-Mockup Interface	
ion FMI programming and validation		programming and validation	
Driving cycle on the HiL platform			
W	P5	Management	
Meetings, Workshops, Conferences, Reports, Advertising, Market introduction,			
	RT applications validation LOGE-RT on th W s for RT compilation HiL specification Integration of LOGE-R W ion Driving cycle on	RT applications Modelling updates: validation Optimization LOGE-RT on the MiL platform WP3 s for RT compilation Interpolation HiL specification Automated Integration of LOGE-RT on the HiL platform WP4 ion FMI p Driving cycle on the HiL platform WP5	



Implementation strategy

"We inform our customers about the project and keep them involved to increase their interest"

> LOGE-RT development 2020

Project kick-off Oct 2019

Project end **Sep 2021**

LOGE-RT & HiL RDE application

2021

LOGE-RT software market introduction 2021

- 2025

OEMs, Tier 1 in application field of Virtual vehicle calibration

- Function development
- Hybrid & electrification
- Automotive software development

"There is a high interest in this technology in different application fields"

Impact of the Project

Strategies for knowledge transfer to improve the impact of the CONNECDT project:

Action	Description	Time frame
Personal meetings	During the personal meetings with customers, OEMs and Tier 1 the project partners will present non-confidential results.	During and after the project
Workshops	The project partners will organize workshops with customers, OEMs and Tier 1 to discuss the project results and progress.	During the project
Conferences	The project partners will attend international conferences for scientific and industrial organization to present and discuss the latest project results.	During and after the project
Publications	The project partners will publish the project results in international journals.	During and after the project
Graduates	Graduates who are working on the project and get a new position in the industry could promote the project results.	After the project
Website	The website contains a description of the project, its goals, the project partners, recent news and publications.	During and after the project

