CONVERGE User Conference-North America

Surrogate Impact on Flame Propagation and Knock Prediction

C. Netzer, F. Mauss, Brandenburg University of Technology, Cottbus, Germany

Brandenburg University of Technology Cottbus - Senftenberg L. Seidel, H. Lehtiniemi LOGE AB, Lund, Sweden

September 24–28, 2018, Madison, USA

Objective

Fuel octane rating characteristics:

- Research Octane Number RON
- Motored Octane Number MON
- Octane Sensitivity S = RON MON

Fuel surrogate

- Pure iso-Octane
- Primary Reference Fuels (PRF)
 - iso-Octane (RON = MON = 100)
 - *n*-Heptane (RON = MON = 0)
- Toluene Reference Fuels (TRF) and Ethanol containing Toluene Reference Fuels (ETRF)
 - iso-Octane (RON = MON = 100)
 - *n*-Heptane (RON = MON = 0)
 - Toluene (RON = 120 / MON = 109)
 - Ethanol (RON = 109 / MON = 90)

I. Objective

II.Combustion Modeling Approach

III.Impact of Gasoline Surrogate on Flame Propagation

IV.Impact of Gasoline Surrogate on Knock Prediction

V. Summary and Conclusions

MODEL APPROACH

Knock Prediction

- G-equation and well stirred reactors in the unburned zone
 - both available in Converge 2.4.9
- Laminar flame speed is retrieved from a look-up table composed for a surrogate

- Auto-ignition in the unburned zone is predicted using the ETRF mechanism by Seidel (2017)
 - ETRF: Ethanol, Toluene, iso-Octane & n-Heptane
 - 188 species and 1049 reactions
 - Major exhaust-out emissions
 - Thermal NOx

Knock Evaluation

- Detonation diagram by Bradley and co-workers (2002)
 - -Resonance parameter: $\xi = \frac{a}{u} = a \frac{\partial T}{\partial x} \frac{\partial \tau}{\partial T}$

-Reactivity parameter: $\varepsilon = \frac{\iota}{a \tau_e}$

Converge User Conference 2018

SURROGATE FORMULATION

Surrogate Formulation

Composed using the correlations by Morgan et al. (2010) and Anderson et al. (2010)

		Gasoline	PRF	TRF	ETRF 1	ETRF 2	ETRF 3
RON*	-	94.5	94.5	94.5	94.5	94.6	94.4
MON	-	84.1	94.5	88.2	88.1	87.6	84.3
S	-	10.4	0	6.3	6.4	7	10.1
aromatic content*	vol%	32.6	0	32.6	22.5	18.8	44.6
ethanol content*	vol%	0	0	0	5.1	10.9	10.4
ρ	kg/m ³	747.5	691.3	747.3	735.3	728.5	769.6
LHV	MJ /kg	42.9	44.4	42.9	42.4	41.7	40.9
Μ	g/mol	-	113.4	103.1	98.4	93.3	89
C:H:O -ratio	mass%	87:13:0	84:16:0	87:13:0	84:14:2	82:14:4	84:12:4

*Input properties

ethanol

ETRF 3

FLAME PROPAGATION

Laminar Flame Speed Prediction

- Fuel: iso-octane
- Correlation by Metghalchi and Keck (1982)
- Correlation by Gülder et al. (1984)
- Prediction using the ETRF LOGEGasoline by Seidel (2017)
- Temperature dependency:

Converge User Conference 2018

Engine Conditions iso-Octane

Combustion Prediction

Simulations

120

100

80

60

Laminar flame speed [cm/S]

- Correlation by Metghalchi and Keck (1982)
- Correlation by Gülder et al. (1984)
- Detailed chemistry flame speed tables using LOGEgasoline by Seidel (2017)
 - Iso-Octane
 - TRF RON 94.5 (used for calibration!)
- Laminar Flame Speed

Burn duration Sim vs Exp

Converge User Conference 2018

Engine Conditions ETRF Surrogates

Simulations

– Detailed chemistry flame speed tables using LOGEgasoline by Seidel (2017) for the 5 surrogates

AUTO-IGNITION PREDICTION

Auto-Ignition Prediction – Same Fuel Mass

- Same fuel and air mass
- Different H:C:O-ratios $\Rightarrow \phi = 1 + / 0.05$
- →Different trapped energy at IVC
- Same flame speed table
 Similar flame propagation and location of the hotspots
- Spark timing sweep
- Auto-igniton evaluation using the detonation diagram

Auto-Ignition Prediction – Same Fuel Mass

Converge User Conference 2018

Auto-Ignition Prediction – Same Fuel Mass

Auto-Ignition Prediction – Same Fuel/Air Equivalence Ratio

- Same fuel/airequivalence ratio
- $\rightarrow \phi$ = 1+/- 0.01
- Surrogate specific flame speed table
- →Spark timing calibration

	PRF	ETRF 3
ΔST	+2°CA	-0.5°CA

- Spark timing sweep
- Auto-ignition evaluation using the detonation diagram

Converge User Conference 2018

Auto-Ignition Tendency Estimation

Zero-dimensional, homogenous simulations:

- CVR = Constant Volume Reactor
- RCM = Rapid Compression Machine (transient)

MON		ETRF 3 > ETRF 2 > ETRF 1 > TRF >PRF
CVR	1.0	TRF > ETRF 1 > ETRF 2 > ETRF 3 > PRF
CVR	1+/-0.05	ETRF1 ETRF 2 > TRF > ETRF 3 > PRF
RCM	1+/-0.05	ETRF2 > ETRF 1 > TRF ETRF 3 > PRF
	$T_{initial} = 600 \text{ K}$	
RCM	1+/-0.05	ETRF2 PRF > ETRF 1 ETRF 3 > TRF
	$T_{initial} = 800 \text{ K}$	
CFD	1+/-0.05	ETRF2 > TRF > ETRF 1 > PRF > ETRF 3
CFD	1+/-0.01	TRF > ETRF 1 > ETRF 2 > PRF ETRF 3

SUMMARY AND CONCLUSIONS

Summary and Conclusion

Summary

- 1. Surrogates with same RON, but different MON have been composed: PRF, TRF and ETRF
- 2. Analysis of impact of the laminar flame speed model
- 3. Air mass and fuel mass constant and similar flame propagation (3d CFD)

 \rightarrow ignition kernel appearance at the same position (3d CFD)

- 4. Same fuel/air equivalence ratio and surrogate specific laminar flame speed table
 - \rightarrow Shift in spark timing necessary
- 5. Comparison to knock tendency in constant volume reactors and rapid compression machine simulations
- Step 3. and Step 5. have been repeated using the scheme from Cai and Pitsch (2015)

Flame propagation

- Correlation vs. detailed chemistry $\Delta CA_{50,max} = 4^{\circ}CA$, $\Delta p_{max} = 12$ bar
- Surrogate impact surrogates $\Delta CA_{50,max} = 1.5$ °CA, $\Delta p_{max} = 3.5$ bar

Auto-ignition and knock prediction

- For the same RON, the auto-ignition tendency in the engine simulations is very different
- The found shift in KLSA is >2 °CA and bigger, ETRF 2 and TRF agree with experiment
- No clear connection between MON and knock tendency
- No clear connection between ignition delay time in homogenous reactors and knock tendency
- This finding is irrespective of the used reaction scheme, but may depend on the specific surrogate properties such as density, heat capacity, lower heating value and C:H:O-ratio
- We found that it is not possible to estimate the knock tendency of different surrogates in the CFD simulation solely from homogenous reactor calculations

CONVERGE User Conference-North America

Thank you!

C. Netzer, F. Mauss, Brandenburg University of Technology, Cottbus, Germany

Brandenburg University of Technology Cottbus - Senftenberg L. Seidel, H. Lehtiniemi LOGE AB, Lund, Sweden

September 24–28, 2018, Madison, USA

Mechanism Validation

