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Objective

A The main target within internal combustion engine simulation is to achieve
predictive results.

A Detailed chemistry schemes play a kegple

| to reproduce fuel sensitivities
A Knocking combustion

A8 8
| to predict emissions
A NOXx
A Soot
A Unburned hydrocarbons
A8 8
I to understand new combustion concepts Opt|m|zat|0n
A Water injection
A RCCI
A888 Source: Pasternak M. et al., SAE Technical Paper 2012-01-1072 (2012)
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Objective

Avallability of detailed chemistry schemes and their complexity are increasing
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THE COMBUSTION PROGRESS VARIABLE
(CPV) MODEL
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General Idea of the CPV (Combustion Progress Variable) Model

The well-stirred reactor (WSR) combustion model is increasing again in
popularity

The larger the mechanism is, the more species are transported, and the more
CPU time is required for solving combustion chemistry

Idea: useh,qg as progress variableas we have before for transientlamelet
models and cell local CMC for combustioand apply to the WSR combustion
model

Benefit: Mechanism size will not affect CFD run -time, since all combustion
chemistry is pretabulated and the number of scalars to transport will be the
same regardless of chemical mechanism
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The Progress Variable

|dea: a progress variableCcan be used for reconstruction of the thermeo
chemical state on the whole reaction trajectory. Lehtiniemi et al., Combust Sci Technol 178, 2006

C = O:unreacted mixture
C = 1:fully burned mixture
Track both low and high temperature reactions

6
0r 10 T T T 3000

Matrisciano et al., SAE Technical Paper 2017-01-05
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The fuel oxidation is parametrized using
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chemical enthalpyh s
298 o -1 2200
& <
v F] = 2000 g
O % 1800 g
h h 5 1600 £
S 2 1400
£
. . 2 1200
h,eg current chemical enthalpy in the cell © (000
”, . . k
Q j enthalpy of formation at standard state (maximum) 800
‘Q  chemical enthalpy at maximum total heat release(minimum) 3 . . ‘ 600
0 0.5 1 1.5 2
Time [ms]

Chemical enthalpy and temperature as a function of time for a constant pressure

Brandenburg calculation at 10 bar and 750 K for an n-heptane/ air mixture at «=1.
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The Chemistry Look -up Table

Detailed chemistry scheme is solved using adiabatic constant pressure reactors
The created table is surrogate sensitive, but independent of operating conditions
AO OPAAAh AT CET A CAIT T AOOUh %' 2 AiT OT (
A fully automated tool for the table generation is availabld-:OGEtable

ﬁable look -up parameters\ Info stored in the look -up table
Fuel
- Pressurep - Progress variable source terms— O,
- Unburned TemperatureT - Molar mass of the mixtureM,_.. N,
- Equivalence ratio - Thermodynamic polynomial coefficients CG,
- EGR amountece - Chemical species for thermodynamics H,O
- Any chemical species that the user decides to CO
\ / monitor H,
- Emission source terms GH;
GH,
Soot
NO,

Brandenburg
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The Chemistry Look -up Table

Exemplary dimensions of a CPV table for Diesel application

EGR [%0] 0.0z 40.0 5
Equivalence ratio [] 0.2-4.0 19
Pressure [bar] 1.0-200.0 17
Unburnt temperature [K] 350.0- 1400.0 67
Progress Variable 0.0-1.0 15

Table generation done vid.OGEtables1.0
CPU time for table generation: 3h

Temperature GridPoints:

3 points in the range[350 ; 550] K
45 pointsin the range[560 ;1000] K
11 pointsin the range [L020 ;1200] K
8 points in the range[1225 ;1400] K

191 520 points

on 8 parallel cores(2016) 1 GB
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Combustion Progress Variable Model

The combustion model is replaced, chemistry solution from the lockp table
Transport of passives and species by CFD code
Communication over source subroutine

éD Code \ Combustion Progress Variable Model
Transport of gz:);nlg,g:sw Combu_stion Soot NOX
A Chemical enthalpyH,o3 | A4 Well-stirred Method of Thermal NO
A Mixture fraction Z R T reactor model Moments M,
A Mass fraction EGR/gr | A with source and M,
A Species for A Year terms from the
thermodynamics CPV table
A Emissions
Extra output species are Update of sources
&ssigned agassive _nt / ﬁ ;'zgs
A YEGR

Species / emission update
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Additional transport equations

Mixture fraction

To [P, R I T,
: / Solved by CPV

Progress variable Solved by CONVERGE
10

' o

(Cp0 ), (P 0 ) 7

f " i
Solved by CONVERGE Solved by CPV
If tuning is required, it is possible to scale the chemical reaction source term

CPV thermaspecies (9 species)

LB iepa), (0P o) T | T
/ >~

Solved by CONVERGE Solved by CPV
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Additional transport equations (cont.)

Thermal NO marker

_ [ iepe ), (P o) T
! / \

Solved by CPV
Soot moments M and M, Solved by CONVERGE oved by

—a
Tt

T (), WPO) T
/ Solved by CPV
Solved by CONVERGE

The thermal NO model can be calibrated using calibration parameters A, B, C and D. Usually it is only
needed to use parameter A.

The soot model allows for calibration through scaling source terms for:
Nucleation, Surface growth, fragmentation, oxidation b®, and oxidation by OH
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APPLICATION: DIESEL ENGINE
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Diesel Engine Application (1)

A Reaction scheme A Engine case
I Reduced nheptane reaction scheme 1600 rpm
A\ 56 species and 206 reactions I Single injection at 3CAbTDC
I Low and high temperature chemistry I EGRamount 4% and 30 %
I Pathways for major engine out emissions I Borel1l37mm
I Stroke 165 mm
Seidel et al., J. Eng. Gas Turbines and Power 2017 T Connectingrod 263 mm
A CPV table
EGR [%] 0.0z 50.0
Equivalence ratio F] 0.1-10.0 38
Pressure [bar] 1.0-200.0 24
Unburnt temperature [K] 300.0-1500.0 89

Brandenburg
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Validation against ontline chemistry solver

Diesel Engine Application (1) z Combustion Prediction

CPV model is compared to an-line well-stirred reactor model (LOGE API)
EGR amount 4% and 30%
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Diesel Engine Application (1) z Combustion Prediction

LOGE APIT 30 % EGR

CPV1 30 % EGR
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