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 The main target within internal combustion engine simulation is to achieve 
predictive results.

 Detailed chemistry schemes play a key role 

– to reproduce fuel sensitivities
 Knocking combustion

 ….

– to predict emissions
 NOx

 Soot

 Unburned hydrocarbons 

 ….

– to understand new combustion concepts
 Water injection

 RCCI

 …..

Objective
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Source: Pasternak M. et al., SAE Technical Paper 2012-01-1072 (2012)



Objective

 Availability of detailed chemistry schemes and their complexity are increasing
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Source: Liu and Law, Prog. Energ. Combust. (2009)

Dilemma in 3D

More species lead to more 
accurate results, but also to a high 
demand of computational costs

Solution

Tabulated chemistry approaches 
where CPU time is independent of 
the number of species in the 
reaction mechanism
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THE COMBUSTION PROGRESS VARIABLE 
(CPV) MODEL 
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General Idea of the CPV (Combustion Progress Variable) Model

 The well-stirred reactor (WSR) combustion model is increasing again in 
popularity 

 The larger the mechanism is, the more species are transported, and the more 
CPU time is required for solving combustion chemistry

 Idea: use h298 as progress variable as we have before for transient flamelet
models and cell local CMC for combustion, and apply to the WSR combustion 
model

– Benefit: Mechanism size will not affect CFD run-time, since all combustion 
chemistry is pretabulated and the number of scalars to transport will be the 
same regardless of chemical mechanism



The Progress Variable 

 Idea: a progress variable C can be used for reconstruction of the thermo-
chemical state on the whole reaction trajectory. 

– C = 0:  unreacted mixture 

– C = 1:  fully burned mixture

– Track both low and high temperature reactions

 The fuel oxidation is parametrized using 
chemical enthalpy h298

𝐶 =
ℎ298−ℎ298,0

ℎ298,𝑒𝑞 −ℎ298,0
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Lehtiniemi et al., Combust Sci Technol 178, 2006

Matrisciano et al., SAE Technical Paper 2017-01-05

h298 current chemical enthalpy in the cell
ℎ298,0 enthalpy of formation at standard state  (maximum)

ℎ298,𝑒𝑞 chemical enthalpy at maximum total heat release(minimum)

Chemical enthalpy and temperature as a function of time for a constant pressure 

calculation at 10 bar and 750 K for an n-heptane/ air mixture at ϕ=1. 



 Detailed chemistry scheme is solved using adiabatic constant pressure reactors

 The created table is surrogate sensitive, but independent of operating conditions 
as speed, engine geometry, EGR amount, load, ….

 A fully automated tool for the table generation is available: LOGEtable

Info stored in the look-up table

- Progress variable source terms  
𝑑𝐶

𝑑𝑡

- Molar mass of the mixture Mmix

- Thermodynamic polynomial coefficients
- Chemical species for thermodynamics 
- Any chemical species that the user decides to 

monitor
- Emission source terms 

The Chemistry Look-up Table
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Table look-up parameters

- Pressure p
- Unburned Temperature T
- Equivalence ratio ϕ
- EGR amount YEGR

Fuel 
O2

N2

CO2

H2O
CO
H2

C2H2 

C2H4

Soot 
NOx



 Exemplary dimensions of  a CPV table for Diesel application

 Table generation done via LOGEtable v1.0

– CPU time for table generation: 3h
on 8 parallel cores (2016)

The Chemistry Look-up Table
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191 520 points

1 GB

Property Range Grid points

EGR [%] 0.0 – 40.0 5

Equivalence ratio [-] 0.2 - 4.0 19

Pressure [bar] 1.0 - 200.0 17

Unburnt temperature [K] 350.0 - 1400.0 67

Progress Variable 0.0 -1.0 15 

Temperature Grid Points:
3 points in the range [350 ; 550] K
45 points in the range [560 ;1000] K
11 points in the range [1020 ;1200] K
8 points in the range [1225 ;1400] K



 The combustion model is replaced, chemistry solution from the look-up table

 Transport of passives and species by CFD code

 Communication over source subroutine 

Combustion Progress Variable Model 
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Combustion Progress Variable Model 

Table look-up 
parameters
• p
• T
• ϕ
• YEGRYEGR

Update of sources 
• H298

• Z
• YEGR

Species / emission update 

Combustion
Well-stirred 
reactor model 
with source 
terms from the 
CPV table

Soot
Method of 
Moments M0

and M1

NOx
Thermal NO

CFD Code

Transport of
• Chemical enthalpy H298

• Mixture fraction Z
• Mass fraction EGR YEGR

• Species for 
thermodynamics

• Emissions 
Extra output species are 
assigned as passive_nt



Additional transport equations

 Mixture fraction 

 Progress variable

– If tuning is required, it is possible to scale the chemical reaction source term

 CPV thermo-species (9 species)

𝜕  𝜌  𝑌𝛼
𝜕𝑡

+ 𝛻 ⋅  𝜌 𝒗  𝑌𝛼 − 𝛻 ⋅  𝜌𝐷t𝛻  𝑌𝛼 = 𝜌  𝜔𝑆δ𝛼𝛽 + 𝜌  𝜔𝛼

𝜕  𝜌  𝑍

𝜕𝑡
+ 𝛻 ⋅  𝜌 𝒗  𝑍 − 𝛻 ⋅  𝜌𝐷t𝛻  𝑍 = 𝜌  𝜔𝑆

𝜕  𝜌  ℎ298
𝜕𝑡

+ 𝛻 ⋅  𝜌 𝒗 ℎ298 − 𝛻 ⋅  𝜌𝐷t𝛻 ℎ298 = 𝜌  𝜔𝑆,ℎ298 + 𝜌  𝜔𝑐ℎ𝑒𝑚,ℎ298

Solved by CONVERGE Solved by CPV

Solved by CPV

Solved by CPV

Solved by CONVERGE

Solved by CONVERGE



Additional transport equations (cont.)

 Thermal NO marker

 Soot moments M0 and M1

 The thermal NO model can be calibrated using calibration parameters A, B, C and D. Usually it is only 
needed to use parameter A.

 The soot model allows for calibration through scaling source terms for:

– Nucleation, Surface growth, fragmentation, oxidation by O2 and oxidation by OH 

𝜕  𝜌  𝑌𝑁𝑂
𝜕𝑡

+ 𝛻 ⋅  𝜌 𝒗  𝑌𝑁𝑂 − 𝛻 ⋅  𝜌𝐷t𝛻  𝑌𝑁𝑂 = 𝜌  𝜔𝑁𝑂

Solved by CPV
Solved by CONVERGE

𝜕  𝜌 𝑀𝑟

𝜕𝑡
+ 𝛻 ⋅  𝜌 𝒗 𝑀𝑟 − 𝛻 ⋅  𝜌𝐷t𝛻 𝑀𝑟 = 𝜌  𝜔𝑟

Solved by CPV
Solved by CONVERGE



APPLICATION: DIESEL ENGINE
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Diesel Engine Application (1)

 Reaction scheme
– Reduced n-heptane reaction scheme

 56 species and 206 reactions

– Low and high temperature chemistry

– Pathways for major engine out emissions

 CPV table
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Seidel et al., J. Eng. Gas Turbines and Power 2017

Property Range Grid points

EGR [%] 0.0 – 50.0 6

Equivalence ratio [-] 0.1 - 10.0 38

Pressure [bar] 1.0 - 200.0 24

Unburnt temperature [K] 300.0 - 1500.0 89

 Engine case
– 1600 rpm

– Single injection at 9°CA bTDC

– EGR amount 4% and 30 %

– Bore 137mm

– Stroke 165 mm

– Connecting rod 263 mm



Diesel Engine Application (1) – Combustion Prediction

 Validation against on-line chemistry solver

– CPV model is compared to a on-line well-stirred reactor model (LOGE API)

 EGR amount 4% and 30%  
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Diesel Engine Application (1) – Combustion Prediction
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Diesel Engine Application (2)

 Reaction scheme
– LOGEDiesel:  

 Surrogate: 75% n-Decane and 25% α-Methyl-
Napthalene

 189 species and 2483 reactions

– Low and high temperature chemistry

– Pathways for major engine out emissions

 CPV table
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Property Range Grid points

EGR [%] 0.0 – 50.0 6

Equivalence ratio [-] 0.1 - 4.0 20

Pressure [bar] 1.0 - 200.0 17

Unburnt temperature [K] 300.0 - 1500.0 22

 Engine case
– 1600 rpm

– Single injection at 9°CA bTDC

– EGR amount 4%, 15% and 30 %

– Bore 137mm

– Stroke 165 mm

– Connecting rod 263 mm



Diesel Engine Application (2) – Emissions Prediction

 Soot and NOx prediction are as expected from 
literature

 4% EGR has highest soot formation and 
oxidation  rates

 Soot-NOx trade-off is reasonable
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APPLICATION: SPARK IGNITION ENGINE
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Spark Ignition Engine Application

 Reaction scheme
– PRF reaction scheme

 Surrogate octane rating: 95

 48 species and 152  reactions

– NOx updates  

– Pathways for major engine out emissions

 CPV table
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Yao-Dong et al. Energy and Fuels, 2012

Property Range Grid points

EGR [%] 0.0 – 10.0 3

Equivalence ratio [-] 0.9 – 1.1 5

Pressure [bar] 1.0 - 200.0 17

Unburnt temperature [K] 300.0 - 1400.0 67

 Engine case
– 3000 rpm

– Spark timing 15°CA bTDC

– Bore 86 mm

– Stroke 90  mm

– Connecting rod 180 mm



Spark Ignition Engine – Combustion Prediction

 Validation against on-line chemistry solver

– CPV model is compared to a online well-stirred reactor model (SAGE)
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CPV



Spark Ignition Engine – Combustion Prediction

 Validation against on-line chemistry solver
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Number of 
Species

Chemistry
solver

CPU time
[hours] 

Diesel
Sector 
Case

56 On-line 36.7 

56 LOGE-CPV 15.7 

189 LOGE-CPV 15.2

SI - Full 
Cylinder

Case

48 On-line 73.8

48 LOGE-CPV 40.1

CPU Times

 All calculations are carried out on 32 cores (2008)

 Speed up factor: 2 and higher
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No CPU time 
increase due to 
additional soot 
and NOx model or 
more species 



CONCLUSIONS
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Conclusions

 A Combustion Progress Variable (CPV) approach is presented

– Model shows a reasonable good agreement to on-line chemistry solver

– Model is applicable to DI and SI combustion simulation

– Emission prediction is physical reasonable

– CPV tables are applicable over a wide range of operating conditions

 CPU times

– Speed up of factor 2 for the 56 species mechanism, higher speed-up for larger 
mechanisms (up to factor 700)

– Emission prediction free of CPU costs

 Next steps:

– Updates to species treatment for thermodynamics

– Updates to improve vaporization 
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THANK YOU!
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