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Simulation Supported Engineering Process
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modeFRONTIER and SRM coupling

Engine optimization

Process automation

Perform engine model 

training

Perform catalyst model 

training

Perform engine + 

catalyst simulation

Mixing time calibration



Phenomenological Turbulence Modeling
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Source: P. Kozuch; Phenomenological model for a combined nitric oxide and soot emission calculation in DI diesel engines; 2004

DENSITY SQUISH INJECTION SWIRL

Source: Franken et al.; Advanced Preditctive Diesel Combustion Simulation using Turbulence Model and Stochastic Reactor Model; 2017



Multi-Objective Optimization
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Dominated design: exist 

solutions with better (lower) 

values of both objectives

Pareto front: there doesn’t 

exist solutions with better 

values for both objectives 

(𝑋,𝑌)belongs to Pareto front if: ∀𝑖∄ 𝑥∗,𝑦∗:𝑓𝑖(𝑥
∗,𝑦∗)≤𝑓𝑖(𝑋,𝑌)
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Incremental Space Filler
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Incremental Space Filler

Augmenting algorithm considering the existing points and adding new 

points sequentially by maximizing the minimum distance from the 

existing points

✓ Suitable for RSM training and GA optimization

✓ Uniform space filling

✓ Rejects unfeasible designs

Initial DOE Points added using ISF



Uniform Latin Hypercube
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Uniform Latin Hypercube

✓ Stochastic space-filler DOE algorithm 

(advanced Monte Carlo sampling)

✓ Generates random numbers conforming to the uniform distribution

✓ Achieves high uniformity levels for each variable

✓ Tries to minimize correlations between input variables 

and maximize the distance between generated designs

✓ Suitable for RSM training and GA optimization

n = 10

Random (Monte Carlo) Uniform Latin Hypercube



Genetic Algorithms
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Genetic and Evolutionary 

Algorithms use the analogy of natural 

selection and reproduction as 

optimization target.

Crossover/mutation

of genes

Form new 

generation

Select the most fit

individuals

Initial population
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n n generations

Display results

Environment = Objectives/Constraints

Individual/genes = Design/values

Dominance = Solution Fitness



Genetic Algorithms
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Single-point Crossover

Single-point Mutation

✓ Each individual (design) is coded by a binary string

✓ Best individuals are selected (by fitness or dominance criteria), and 

operators are applied to generate a new population



FAST Optimization Algorithm
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Design Database

Metamodel Training

Virtual Exploration

Virtual OptimizationReal Optimization

Real Solver

N
e
x
t

g
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Metamodels are Polynomials, 

Radial-Basis-Functions, 

Kriging and Neural Networks.

Evaluation of the real and 

virtual optimization results 

running them in SRM.



What is the objective of this work?
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COMBUSTION CONCEPT

0D SRM TRAINING

MULTI-OBJECTIVE 

OPTIMIZATION

A
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D

NOx emissions
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Engine Map Measurements
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Parameter Value

Type Heavy-Duty Diesel

Displacement 6.7l

EGR No external EGR

Injector Direct Injection

Cylinders 6

Engine Specifications

1 2 3 4 5 6 mfuel

prail

λ

CO2

CO

NOx

HC

mAir

pcyl

Operating Conditions

Pilot+Main Injection

Single Main Injection



0D SRM Training
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1700rpm, 18bar 1300rpm, 21.5bar 1300rpm, 12.5bar 1300rpm, 5.7bar 1200rpm, 5.7bar

1000rpm, 21.5bar1200rpm, 12.5bar 1200rpm, 21.5bar 1000rpm, 5.7bar 1000rpm, 10.2bar

Csq Cinj Csw Cdiss CŰ Ch

1.0 1.7 7.4 1.6 0.5 15

Experiment Simulation



0D SRM Training
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑥=
𝑥𝑖

ҧ𝑥



Algorithm Selection

✓ The FAST NSGA-II predicts a well

defined Pareto Front compared to NSGA-II,

and needs less designs to do so.

✓ The Uniform Latin Hypercube (ULHC) is faster 

than the Incremental Space Filler algorithm.

✓ The Radial Basis Function is not used

for the virtual optimization because 

it is computational too expensive.

✓ The FAST NSGA-II algorithm together with the Uniform Latin Hypercube space filler algorithm 

is selected for optimization.
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Optimization Task

1. Minimize ISFC and sNOx emissions for each operating point.

2. Do not exceed 200bar peak cylinder pressure (PCP) and 1000K turbine inlet temperature 

(TIT). The air-fuel-ratio (AFR) is allowed to change between -3.0 and +3.0.

3. Optimize the operating parameters of each operating point individually:

A. Start of Injection: -16°CA aTDC to +6°CA aTDC,

B. Injection Pressure: 800bar to 2000bar,

C. Compression Ratio: 15 to 21,

D. Initial Temperature: 340K to 390K,

E. External EGR: 0% to 20% (mass-based).
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How the results are presented
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Δ𝑥=
𝑥𝑒𝑥𝑝−𝑥𝑠𝑖𝑚

𝑥𝑒𝑥𝑝
⋅100%

BMEP /bar

Speed / rpm

-5%

Average of all operating points:



Optimization Results
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BMEP /bar

Speed / rpm

-5% -58%

+40% -12%

BMEP /bar

Speed / rpm



Optimization Results
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BMEP /bar

Speed / rpm

+23% +38%

+322% +1.22°CA

BMEP /bar

Speed / rpm



Optimization Results
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1700rpm, 18bar 1300rpm, 21.5bar 1300rpm, 12.5bar 1300rpm, 5.7bar 1200rpm, 5.7bar

1000rpm, 21.5bar1200rpm, 12.5bar 1200rpm, 21.5bar 1000rpm, 5.7bar 1000rpm, 10.2bar

Base Simulation Optimization

➢The compression ratio is most effective for part load operating point efficiency.

➢Full load operating points are highly limited by PCP and TIT.



Conclusions

✓ Simulation Supported Engineering Process based on modeFRONTIER
and SRM is successfully established.

✓ Global SRM mixing time training is 60% faster due to process automation.

✓ Tabulated chemistry accelerates the SRM simulation by factor 1000 compared to online chemistry.

✓ The modeFRONTIER and SRM based optimization process takes 1.8min/design and is faster 
compared to a CFD based optimization approach (up to 16h/design).

✓ The FAST NSGA-II algorithm with the ULHC space filler performed the best for the Heavy-Duty 
Diesel engine optimization.

✓ The ISFC could be reduced by 5% in average and the sNOx emissions are reduced by 58% in 
average.
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