A Computationally Efficient Combustion Progress Variable (CPV) Approach for Engine Applications

Corinna Netzer¹, Harry Lehtiniemi², Anders Borg²,⁴, Andrea Matrisciano²,⁴, Adina Werner¹, Lars Seidel³, Fabian Mauss¹

¹Brandenburg University of Technology, Cottbus, Germany
²LOGE AB, Lund, Sweden
³LOGE Deutschland GmbH, Cottbus, Germany
⁴Chalmers University of Technology, Gothenburg, Sweden

CONVERGE USER CONFERENCE Europe 2018
Bologna, Italy
The main target within internal combustion engine simulation is to achieve predictive results.

Detailed chemistry schemes play a key role

- to reproduce fuel sensitivities
 - Knocking combustion
 -

- to predict emissions
 - NOx
 - Soot
 - Unburned hydrocarbons
 -

- to understand new combustion concepts
 - Water injection
 - RCCI
 -

Objective

- Availability of detailed chemistry schemes and their complexity are increasing.

Dilemma in 3D

More species lead to more accurate results, but also to a high demand of computational costs.

Solution

Tabulated chemistry approaches where CPU time is independent of the number of species in the reaction mechanism.

Outline

1. Objective

2. The Combustion Progress Variable (CPV) Model

3. Applications:
 - Diesel Engine
 - Spark Ignition Engine
 - CPU Times

4. Conclusions
THE COMBUSTION PROGRESS VARIABLE (CPV) MODEL
The well-stirred reactor (WSR) combustion model is increasing again in popularity.

The larger the mechanism is, the more species are transported, and the more CPU time is required for solving combustion chemistry.

Idea: use $h_{298\text{Jg}^{-1}}$ as progress variable as we have before for transient flamelet models and cell local CMC for combustion, and apply to the WSR combustion model.

Benefit: Mechanism size will not affect CFD run-time, since all combustion chemistry is pretabulated and the number of scalars to transport will be the same regardless of chemical mechanism.
The Progress Variable

- **Idea**: a progress variable C can be used for reconstruction of the thermo-chemical state on the whole reaction trajectory.
 - $C = 0$: unreacted mixture
 - $C = 1$: fully burned mixture
 - Track both low and high temperature reactions

- The fuel oxidation is parametrized using chemical enthalpy h_{298}

$$C = \frac{h_{298} - h_{298,0}}{h_{298,eq} - h_{298,0}}$$

h_{298} current chemical enthalpy in the cell
$h_{298,0}$ enthalpy of formation at standard state (maximum)
$h_{298,eq}$ chemical enthalpy at maximum total heat release (minimum)

Lehtiniemi et al., Combust Sci Technol 178, 2006
Matrisiano et al., SAE Technical Paper 2017-01-05
The Chemistry Look-up Table

- Detailed chemistry scheme is solved using adiabatic constant pressure reactors
- The created table is surrogate sensitive, but independent of operating conditions as speed, engine geometry, EGR amount, load,
- A fully automated tool for the table generation is available: LOGEtable

Table look-up parameters
- Pressure p
- Unburned Temperature T
- Equivalence ratio ϕ
- EGR amount Y_{EGR}

Info stored in the look-up table
- Progress variable source terms $\frac{dc}{dt}$
- Molar mass of the mixture M_{mix}
- Thermodynamic polynomial coefficients
- Chemical species for thermodynamics
- Any chemical species that the user decides to monitor
- Emission source terms

Fuel
- O_2
- N_2
- CO_2
- H_2O
- CO
- H_2
- C_2H_2
- C_2H_4

Soot
NO_x
The Chemistry Look-up Table

- Exemplary dimensions of a CPV table for Diesel application

<table>
<thead>
<tr>
<th>Property</th>
<th>Range</th>
<th>Grid points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR [%]</td>
<td>0.0 – 40.0</td>
<td>5</td>
</tr>
<tr>
<td>Equivalence ratio [-]</td>
<td>0.2 - 4.0</td>
<td>19</td>
</tr>
<tr>
<td>Pressure [bar]</td>
<td>1.0 - 200.0</td>
<td>17</td>
</tr>
<tr>
<td>Unburnt temperature [K]</td>
<td>350.0 - 1400.0</td>
<td>67</td>
</tr>
<tr>
<td>Progress Variable</td>
<td>0.0 - 1.0</td>
<td>15</td>
</tr>
</tbody>
</table>

Table generation done via LOGEtable v1.0
- CPU time for table generation: 3h on 8 parallel cores (2016)

Temperature Grid Points:
- 3 points in the range [350 ; 550] K
- 45 points in the range [560 ; 1000] K
- 11 points in the range [1020 ; 1200] K
- 8 points in the range [1225 ; 1400] K

191 520 points

1 GB
The combustion model is replaced, chemistry solution from the look-up table
- Transport of passives and species by CFD code
- Communication over source subroutine

CFD Code

Transport of
- Chemical enthalpy H_{298}
- Mixture fraction Z
- Mass fraction EGR Y_{EGR}
- Species for thermodynamics
- Emissions

Extra output species are assigned as passive_nt

Combustion Progress Variable Model

Table look-up parameters
- p
- T
- ϕ
- Y_{EGR}

Combustion
- Well-stirred reactor model with source terms from the CPV table

Soot
- Method of Moments M_0 and M_1

NOx
- Thermal NO

Update of sources
- H_{298}
- Z
- Y_{EGR}

Species / emission update
Additional transport equations

- **Mixture fraction**
 \[
 \frac{\partial \rho Z}{\partial t} + \nabla \cdot (\rho \vec{v} Z) - \nabla \cdot (\rho D_t \nabla Z) = \rho \omega_s
 \]

- **Progress variable**
 \[
 \frac{\partial \rho \tilde{h}_{298}}{\partial t} + \nabla \cdot (\rho \tilde{v} \tilde{h}_{298}) - \nabla \cdot (\rho D_t \nabla \tilde{h}_{298}) = \frac{\rho \omega_{S,h298}}{} + \frac{\rho \omega_{chem,h298}}{}
 \]
 - If tuning is required, it is possible to scale the chemical reaction source term

- **CPV thermo-species (9 species)**
 \[
 \frac{\partial \rho \tilde{Y}_\alpha}{\partial t} + \nabla \cdot (\rho \tilde{v} \tilde{Y}_\alpha) - \nabla \cdot (\rho D_t \nabla \tilde{Y}_\alpha) = \rho \omega_s \delta_{\alpha\beta} + \rho \dot{\omega}_\alpha
 \]

Solved by CONVERGE
Solved by CPV
Additional transport equations (cont.)

- **Thermal NO marker**
 \[
 \frac{\partial (\rho \tilde{Y}_{NO})}{\partial t} + \nabla \cdot (\rho \tilde{v} \tilde{Y}_{NO}) - \nabla \cdot (\rho D_t \nabla \tilde{Y}_{NO}) = \rho \omega_{NO}
 \]
 Solved by CONVERGE

- **Soot moments M_0 and M_1**
 \[
 \frac{\partial (\rho \tilde{M}_r)}{\partial t} + \nabla \cdot (\rho \tilde{v} \tilde{M}_r) - \nabla \cdot (\rho D_t \nabla \tilde{M}_r) = \rho \tilde{\omega}_r
 \]
 Solved by CPV

- The thermal NO model can be calibrated using calibration parameters A, B, C and D. Usually it is only needed to use parameter A.

- The soot model allows for calibration through scaling source terms for:
 - Nucleation, Surface growth, fragmentation, oxidation by O_2 and oxidation by OH
APPLICATION: DIESEL ENGINE
Diesel Engine Application (1)

- **Reaction scheme**
 - Reduced n-heptane reaction scheme
 - 56 species and 206 reactions
 - Low and high temperature chemistry
 - Pathways for major engine out emissions

- **Engine case**
 - 1600 rpm
 - Single injection at 9°CA bTDC
 - EGR amount 4% and 30 %
 - Bore 137mm
 - Stroke 165 mm
 - Connecting rod 263 mm

- **CPV table**

<table>
<thead>
<tr>
<th>Property</th>
<th>Range</th>
<th>Grid points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR [%]</td>
<td>0.0 – 50.0</td>
<td>6</td>
</tr>
<tr>
<td>Equivalence ratio [-]</td>
<td>0.1 - 10.0</td>
<td>38</td>
</tr>
<tr>
<td>Pressure [bar]</td>
<td>1.0 - 200.0</td>
<td>24</td>
</tr>
<tr>
<td>Unburnt temperature [K]</td>
<td>300.0 - 1500.0</td>
<td>89</td>
</tr>
</tbody>
</table>
Diesel Engine Application (1) – Combustion Prediction

- Validation against on-line chemistry solver
 - CPV model is compared to a on-line well-stirred reactor model (LOGE API)
- EGR amount 4% and 30%
Diesel Engine Application (1) – Combustion Prediction

LOGE API – 30% EGR

CPV – 30% EGR

2018-03-21
Diesel Engine Application (2)

- **Reaction scheme**
 - LOGEDiesel:
 - Surrogate: 75% n-Decane and 25% α-Methyl-Napthalene
 - 189 species and 2483 reactions
 - Low and high temperature chemistry
 - Pathways for major engine out emissions

- **Engine case**
 - 1600 rpm
 - Single injection at 9°CA bTDC
 - EGR amount 4%, 15% and 30 %
 - Bore 137mm
 - Stroke 165 mm
 - Connecting rod 263 mm

- **CPV table**

<table>
<thead>
<tr>
<th>Property</th>
<th>Range</th>
<th>Grid points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR [%]</td>
<td>0.0 – 50.0</td>
<td>6</td>
</tr>
<tr>
<td>Equivalence ratio [-]</td>
<td>0.1 - 4.0</td>
<td>20</td>
</tr>
<tr>
<td>Pressure [bar]</td>
<td>1.0 - 200.0</td>
<td>17</td>
</tr>
<tr>
<td>Unburnt temperature [K]</td>
<td>300.0 - 1500.0</td>
<td>22</td>
</tr>
</tbody>
</table>
Diesel Engine Application (2) – Emissions Prediction

- Soot and NO\textsubscript{x} prediction are as expected from literature
- 4% EGR has highest soot formation and oxidation rates
- Soot-NO\textsubscript{x} trade-off is reasonable
APPLICATION: SPARK IGNITION ENGINE
Spark Ignition Engine Application

Reaction scheme
- PRF reaction scheme
 - Surrogate octane rating: 95
 - 48 species and 152 reactions
- NO\textsubscript{x} updates
- Pathways for major engine out emissions

Engine case
- 3000 rpm
- Spark timing 15°CA bTDC
- Bore 86 mm
- Stroke 90 mm
- Connecting rod 180 mm

CPV table

<table>
<thead>
<tr>
<th>Property</th>
<th>Range</th>
<th>Grid points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR [%]</td>
<td>0.0 – 10.0</td>
<td>3</td>
</tr>
<tr>
<td>Equivalence ratio [-]</td>
<td>0.9 – 1.1</td>
<td>5</td>
</tr>
<tr>
<td>Pressure [bar]</td>
<td>1.0 - 200.0</td>
<td>17</td>
</tr>
<tr>
<td>Unburnt temperature [K]</td>
<td>300.0 - 1400.0</td>
<td>67</td>
</tr>
</tbody>
</table>

Yao-Dong et al. Energy and Fuels, 2012
Spark Ignition Engine – Combustion Prediction

- Validation against on-line chemistry solver
 - CPV model is compared to a online well-stirred reactor model (SAGE)
Spark Ignition Engine – Combustion Prediction

- Validation against on-line chemistry solver
CPU Times

- All calculations are carried out on 32 cores (2008)
- Speed up factor: 2 and higher

<table>
<thead>
<tr>
<th></th>
<th>Number of Species</th>
<th>Chemistry solver</th>
<th>CPU time [hours]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Sector Case</td>
<td>56</td>
<td>On-line</td>
<td>36.7</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>LOGE-CPV</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>LOGE-CPV</td>
<td>15.2</td>
</tr>
<tr>
<td>SI - Full Cylinder Case</td>
<td>48</td>
<td>On-line</td>
<td>73.8</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>LOGE-CPV</td>
<td>40.1</td>
</tr>
</tbody>
</table>

No CPU time increase due to additional soot and NO\textsubscript{x} model or more species.
CONCLUSIONS
Conclusions

- A Combustion Progress Variable (CPV) approach is presented
 - Model shows a reasonable good agreement to on-line chemistry solver
 - Model is applicable to DI and SI combustion simulation
 - Emission prediction is physically reasonable
 - CPV tables are applicable over a wide range of operating conditions

- CPU times
 - Speed up of factor 2 for the 56 species mechanism, higher speed-up for larger mechanisms (up to factor 700)
 - Emission prediction free of CPU costs

- Next steps:
 - Updates to species treatment for thermodynamics
 - Updates to improve vaporization
THANK YOU!