3D Engine knock prediction and evaluation based on detonation theory

Corinna Netzer¹, Lars Seidel¹, Michal Pasternak¹, Cathleen Perlman², Harry Lehtiniemi², Fabian Mauss¹

¹Chair of Thermodynamics / Thermal Process Engineering, Brandenburg University of Technology, Cottbus, Germany
²LOGE AB, Lund, Sweden

CONVERGE USER CONFERENCE 2016
MADISON, Wisconsin
Outline

I. Objective

II. Combustion model

III. Detonation theory

IV. SI Engine Application

V. Summary and Conclusions
Objective

- SI engine development tends towards downsizing and increase in compression ratio to improve efficiency
 - Increased knock tendency

- Demand on SI engine simulations
 - Predict auto-ignition events
 - Reproduce physical sensitivities
 - Predict auto-ignition as function of fuel octane ratings
 - Evaluate the transition of harmless deflagration to undesirable knocking combustion
 - Classify the severity of the auto-ignition event

Our approach:
Detailed chemistry, laminar flame speed tabulation, evaluation with the detonation diagram by Bradley
COMBUSTION MODELING
Combustion Model Approach

\[\bar{\rho} \frac{\partial \hat{G}}{\partial t} + \bar{\rho} (\hat{\mathbf{v}} \cdot \nabla) \hat{G} = \bar{\rho} s_t |\nabla \hat{G}| - \bar{\rho} D_t \tilde{k} |\nabla \hat{G}|\]

Flame front
- \(G = 0\)
- Chemical equilibrium

Burnt zone
- \(G > 0\)
- SAGE model for emission prediction

Unburnt zone
- \(G < 0\)
- SAGE model for auto-ignition prediction

\[s_t = s_l + u' \left\{ - \frac{c_1 c_2^2}{2c_3} Da + \left[\left(\frac{c_1 c_2^2}{2c_3} Da \right)^2 + C_1 C_2^2 Da \right]^{1/2} \right\}\]

Laminar flame speed \(s_l\) table (via user coding)

Figure 1: Schematic illustration of the combustion modelling approach
Gasoline Surrogate Chemistry

- Detailed reaction mechanism
 - Latest LOGE GASOLINE
 - Fuel species (ETRF):
 - Ethanol C_2H_5OH
 - Toluene A_1CH_3
 - Iso-octane $i-C_8H_{18}$
 - N-heptane $n-C_7H_{16}$
 - Oxidation chemistry for C_1-C_5 species
 - Major exhaust-out emissions
 - Thermal NO$_x$
 - Growth pathways for poly-aromatic hydrocarbons
 - 386 species and 4511 reactions
Gasoline Surrogate Chemistry

- Skeletal scheme for auto-ignition and emissions

Detailed reaction scheme
386 species

Horizontal lumping

Reduction: auto-ignition and major emissions
188 species

Reduction: laminar flame speed
78 species

Surrogate mixture formulation

Online chemistry: auto-ignition and emission prediction

Tabulation of laminar flame speed

Figure 2: Ignition delay time for a mixture of 0.72 toluene and 0.28 n-heptane (mole fraction) at $\varphi = 0.3$, $p = 10$, 30, 50 bar. Experimental data from Herzler et al. [5]

Figure 3: Ignition delay time of iso-octane/n-heptane mixtures at 40 bar, $\varphi = 1$. Experimental data from Fieweger et al. [6]
Gasoline Surrogate Chemistry

- Skeletal scheme for laminar flame speed only

<table>
<thead>
<tr>
<th>Detailed reaction scheme</th>
<th>386 species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal lumping</td>
<td></td>
</tr>
<tr>
<td>Reduction: auto-ignition</td>
<td></td>
</tr>
<tr>
<td>and major emissions</td>
<td></td>
</tr>
<tr>
<td>188 species</td>
<td></td>
</tr>
<tr>
<td>Reduction: laminar</td>
<td></td>
</tr>
<tr>
<td>flame speed</td>
<td></td>
</tr>
<tr>
<td>78 species</td>
<td></td>
</tr>
<tr>
<td>Surrogate mixture</td>
<td></td>
</tr>
<tr>
<td>formulation</td>
<td></td>
</tr>
<tr>
<td>Online chemistry:</td>
<td></td>
</tr>
<tr>
<td>auto-ignition and</td>
<td></td>
</tr>
<tr>
<td>emission prediction</td>
<td></td>
</tr>
<tr>
<td>Tabulation of</td>
<td></td>
</tr>
<tr>
<td>laminar flame speed</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Laminar flame speeds at 1 atm and 358 K with air as oxidizer for a mixture of 11.65% n-heptane, 36.47% iso-octane, 36.89% toluene and 15.0% ethanol (liquid volume fraction) Experimental data from Dirrenberger et al. [7]

Figure 5: Laminar flame speeds at 1 atm and 358 K with air as oxidizer for a mixture of 33.3% n-heptane, 33.33% iso-octane, and 33.3% ethanol (liquid volume fraction) Experimental data from van Lipzig et al. [8]
Gasoline Surrogate Chemistry

- **Surrogate mixture formulation**

 - Based on published correlations (Anderson et al. [3] and Morgan et al. [4])
 - Input parameters from fuel data sheet:
 - RON
 - Aromatic content (Toluene)
 - Ethanol content
 - Output: Surrogate mixture formulation

![Figure 6: Predicted MON vs. measured MON. Dashed line shows an uncertainty of 1 octane point](image)
Gasoline Surrogate Chemistry

- Tabulation of laminar flame speed
 - Table generated with LOGEsoft based on reaction scheme or correlations (faster)
 - Fast tabulation due to reduced reaction scheme
 - Tabulated in wide engine relevant range

<table>
<thead>
<tr>
<th>Property</th>
<th>Range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>1 bar to 150 bar</td>
<td>Up to 10 bar: 1 bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 to 150 bar: 10 bar</td>
</tr>
<tr>
<td>Unburnt zone temperature</td>
<td>350 K to 1600 K</td>
<td>50 K</td>
</tr>
<tr>
<td>Fuel-air equivalence ratio</td>
<td>0.5 to 1.5</td>
<td>0.05</td>
</tr>
<tr>
<td>EGR level</td>
<td>0 % to 30 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>
DETONATION THEORY
Engine Knock Evaluation

- Detonation diagram by Bradley et al.

- Severity of auto-ignition event based on two dimensionless parameters:

\[\zeta = \frac{a}{u} = a \cdot \frac{\partial T}{\partial x} \cdot \frac{\partial \tau}{\partial T} \]

\[\varepsilon = \frac{l}{a \cdot \tau_e} \]

- speed of sound \(a \)
- reaction front velocity \(u \)
- Ignition delay time \(\tau \)
- kernel size \(l \) in which the temperature gradient is
- Excitation time \(\tau_e \) (time from 5% to maximum heat release)

Figure 7: Detonation diagram; Black symbols and lines: experiments Bradley et al. [1]; Grey symbols 1D simulations – open symbols: no detonation, filled symbols: developing detonation Peters et al. [9]; Colored symbols LES engine simulations: green stars: subsonic auto-ignition, blue squares: no knock, red circle: mild knock, oranges crosses: super-knock Bates et al. [10]
SI ENGINE APPLICATION
Only the most severe auto-ignition event per calculation is shown.

Transition from acceptable subsonic auto-ignition over light knock to heavy knock go well together with the predicted pressure gradients.
Detailed Investigations

- **Investigation: severity of different ignition kernels**

CA 2.5
CA 4.0
CA 4.5
CA 5.0

![Graphs showing pressure gradient and \(\zeta \) vs. CAD for different CA values](image)

![Graph showing \(\zeta \) vs. \(\varepsilon \) for different CA values](image)
Study: same operating point with different fuel octane ratings and corresponding laminar flame speed tables

- The severity of the auto-ignition event decreases with increased fuel RON
Investigation: first appeared ignition kernel

Sensitivity Fuel Octane Rating

- **RON 87.0 / MON 82.4**
 - CA 2.5
- **RON 96.0 / MON 88.2**
 - CA 4.0
- **RON 106.9 / MON 98.7**
 - CA 8.0

Auto-ignition appearance CA

Auto-ignition severity

Ignition kernel size
Conclusions

- **Engine knock prediction based on**
 - detailed chemistry
 - tabulated laminar flame speeds
 - SAGE for auto-ignition prediction

- **Physical sensitivity to**
 - spark advancing
 - fuel quality

- The knock severities based on the detonation diagram go well together with the predicted pressure traces.

- Suggested tool chain can be used efficiently to predict knock severity of different operating conditions and fuel octane ratings.
References

Acknowledgements

Thanks for the constant support from CSI!

Special thanks to Frédéric Ravet!