ProFIT Brandenburg

The European Development Fund for Regional Development (EFRE) supports SMEs in innovative research and development projects. LOGE’s focus within this project is the development of a software tool for vehicle exhaust after treatment investigation; the new simulation tool will be able to describe and optimize the physical and chemical processes in exhaust after treatment devices, including catalyst ageing.

Project start date: 1st of August 2016 Project end date: 31st of July 2019

Brandenburger Innovationsfachkräfte

Brandenburger Innovationsfachkräfte Förderung:

Ziel: verbesserte Modellierung der Flammenausbreitung beschäftigen.

Die Flammengeschwindigkeit ist ein wichtiger Parameter für den Verlauf von Verbrennungsprozessen, insbesondere in Benzinmotoren. Gerade für Bedingungen, die typischerweise in Motoren herrschen, ist die Unsicherheit über die Flammengeschwindigkeit noch groß. Daraus folgt, dass bessere Modelle für die Flammengeschwindigkeit direkt das Verbrennungsmodell verbessern. Damit wird eine genauere Vorhersage über (Motor-)Effizienz und Schadstoffbildung möglich.

Gefördert durch das Ministerium für Arbeit, Soziales, Gesundheit, Frauen und Familie aus Mitteln des Europäischen Sozialfonds und des Landes Brandenburg.

The project is funded by the European Social Fund (ESF) and the Federal State of Brandenburg via the Brandenburg Ministry for Labour , Social Affairs, Health, Women and Family (MASGF).


PaREGEn addresses the short term scope of the GV-02 call via research into and the innovation of gasoline engines for light duty vehicles. Specifically, engines used in mid to premium passenger cars will be addressed. With the electrification smaller vehicles, focusing on larger cars is especially important: the need for clean, efficient & economic engines for inter-urban transport is more urgent and effective to resolve the challenges of air quality, decarbonisation & cost-effective mobility.

Through using state of the art techniques, like optical engines, modelling & simulation tools (for new control strategies or understanding particle formation) and applying new engine componentry, the optimal trade-off between efficiency & emissions will be found. Of attention will be the control of particle numbers between 10 to 23nm. This learning will be used in two, manufacturer lead vehicle demonstrations. These demonstrators will use downsized engines not yet on the market. The two approaches will use different combustion, dilution, fuel injection, boosting and after treatment systems. Completion of the project will show the way forward to a 15% CO2 reduction along with real driving emissions limits. If adopted across all light vehicles these short term engine innovations will reduce the EU vehicle parc emissions by ~2MtCO2 in 2025, 10nm in 2030. As well as improving EU competitiveness, a valuable contribution from PaREGEn will be new tools: to benefit engine design, development & control in general, long after project completion.

For further reading please visit the project website


Production of second-generation bio-fuel and its influence on engine combustion and emissions (BioEng). This project aims to improve the production processes for 2nd generation biofuels. Using ‘high gravity’ techniques which have higher raw material concentrations, the project will improve the economic feasibility of this promising technology.


Experimental and Computational Tools for Combustion Optimization in Marine and Automotive Engines
The research objectives of the ECCO-MATE project are to develop a synergistic framework for cutting edge research on novel engine technologies for optimizing energy efficiency and minimizing NOx, SOx, and soot emissions, based on state-of-the-art simulation and diagnostic tools for both automotive and marine engines. The research methodology will be based on science in the fields of aerodynamics, two-phase flow and combustion chemistry. The required range of expertise cannot be found in a single institution. Therefore, there is the need for establishing a multi-disciplinary, inter-sectorial and intra-sectorial network, tackling the problems via the development of appropriate tools.

The ECCO-MATE innovation lies on developing common methods for the experimental and computational investigation of marine and automotive diesel engine combustion by coupling state-of the-art two-phase flow and combustion chemistry with advanced engine diagnostic and CFD tools.

Project start date: 2013-10-01
Project end date: 2017-10-01


Fordonsstrategisk forskning och innovation (FFI).

Fuel Flexible Engine Platform.

The utilisation of alternative fuels is made possible by providing a truck engine with new components. Injector adapted for fuels with low viscosity and with high volatility. Different types of ignition systems will be evaluated and demonstrated to handle high-octane fuels. Cylinder head and combustion geometry will be modified to handle two separate injectors. The engine will be able to operate in different combustion modes, which allows optimising the efficiency, emissions and fraction of alternative fuel dependent on load and speed. The high degree of flexibility gives the engine a potential for higher efficiency than is possible using only diesel. The project will also lead to increased fundamental understanding of fuel properties and its effect on combustion, through systematic studies spray, engine tests and improved simulation models.



Bio4Fuels for the first time brings together leading Norweigan research institutions, universities, key national and international partners, major forestry resources owners and regional authority into one common initiative on production of energy carriers from renewable sources.

For further reading visit the project website